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Introduction

• Concurrency can occur at four levels:
– Machine instruction level
– High-level language statement level
– Unit level
– Program level

• Because there are no language issues in 
instruction- and program-level 
concurrency, they are not addressed here
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Multiprocessor Architectures

• Late 1950s - one general-purpose processor and 
one or more special-purpose processors for input 
and output operations

• Early 1960s - multiple complete processors, used 
for program-level concurrency

• Mid-1960s - multiple partial processors, used for 
instruction-level concurrency

• Single-Instruction Multiple-Data (SIMD) machines
• Multiple-Instruction Multiple-Data (MIMD) 

machines 
• A primary focus of this chapter is shared memory 

MIMD machines (multiprocessors)
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Categories of Concurrency

• Categories of Concurrency:
– Physical concurrency - Multiple independent 

processors ( multiple threads of control)
– Logical concurrency - The appearance of 

physical concurrency is presented by time-
sharing one processor (software can be 
designed as if there were multiple threads of 
control) 

• Coroutines (quasi-concurrency) have a 
single thread of control

• A thread of control in a program is the 
sequence of program points reached as 
control fows through the program
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Motivations for the Use of Concurrency

• Multiprocessor computers capable of physical 
concurrency are now widely used

• Even if a machine has just one processor, a 
program written to use concurrent execution can 
be faster than the same program written for 
nonconcurrent execution

• Involves a diferent way of designing software that 
can be very useful—many real-world situations 
involve concurrency

• Many program applications are now spread over 
multiple machines, either locally or over a network
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Introduction to Subprogram-Level 
Concurrency
• A task or process or thread is a program 

unit that can be in concurrent execution 
with other program units

• Tasks difer from ordinary subprograms in 
that:
– A task may be implicitly started
– When a program unit starts the execution of a 

task, it is not necessarily suspended
– When a task’s execution is completed, control 

may not return to the caller

• Tasks usually work together
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Two General Categories of Tasks

• Heavyweight tasks execute in their own 
address space 

• Lightweight tasks all run in the same 
address space – more efcient

• A task is disjoint if it does not 
communicate with or afect the execution 
of any other task in the program in any 
way 
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Task Synchronization

• A mechanism that controls the order 
in which tasks execute

• Two kinds of synchronization
– Cooperation synchronization
– Competition synchronization

• Task communication is necessary for 
synchronization, provided by:
- Shared nonlocal variables
- Parameters
- Message passing
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Kinds of synchronization

• Cooperation: Task A must wait for task B to 
complete some specifc activity before task 
A can continue its execution, e.g., the 
producer-consumer problem

• Competition: Two or more tasks must use 
some resource that cannot be 
simultaneously used, e.g., a shared counter
– Competition is usually provided by mutually 

exclusive access  (approaches are discussed 
later)           
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Need for Competition Synchronization

Task A: TOTAL = TOTAL + 1
Task B: TOTAL = 2 * TOTAL

- Depending on order, there could be four diferent results
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Scheduler

• Providing synchronization requires a 
mechanism for delaying task execution

• Task execution control is maintained by a 
program called the scheduler, which maps 
task execution onto available processors
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Task Execution States

• New - created but not yet started
• Ready - ready to run but not currently 

running (no available processor)
• Running 
• Blocked - has been running, but 

cannot now continue (usually waiting 
for some event to occur)

• Dead - no longer active in any sense



Copyright © 2015 Pearson. All rights reserved. 1-13

Liveness and Deadlock

• Liveness is a characteristic that a program 
unit may or may not have
- In sequential code, it means the unit will
    eventually complete its execution

• In a concurrent environment, a task can 
easily lose its liveness

• If all tasks in a concurrent environment 
lose their liveness, it is called deadlock
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Design Issues for Concurrency

• Competition and cooperation 
synchronization*

• Controlling task scheduling
• How can an application infuence task 

scheduling
• How and when tasks start and end 

execution
• How and when are tasks created
     * The most important issue
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Methods of Providing Synchronization

• Semaphores
• Monitors
• Message Passing
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Semaphores 

• Dijkstra - 1965
• A semaphore is a data structure consisting of a 

counter and a queue for storing task descriptors
– A task descriptor is a data structure that stores all of the 

relevant information about the execution state of the task

• Semaphores can be used to implement guards on 
the code that accesses shared data structures

• Semaphores have only two operations, wait and 
release (originally called P and V by Dijkstra)

• Semaphores can be used to provide both 
competition and cooperation synchronization
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Evaluation of Semaphores

• Misuse of semaphores can cause failures 
in cooperation synchronization, e.g., the 
bufer will overfow if the wait of 
fullspots is left out

• Misuse of semaphores can cause failures 
in competition synchronization, e.g., the 
program will deadlock if the release of 
access is left out
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Monitors

• Ada, Java, C#
• The idea: encapsulate the shared data 

and its operations to restrict access
• A monitor is an abstract data type for 

shared data
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Competition Synchronization

• Shared data is resident in the monitor 
(rather than in the client units)

• All access resident in the monitor
– Monitor implementation guarantee 

synchronized access by allowing only one 
access at a time

– Calls to monitor procedures are implicitly 
queued if the monitor is busy at the time of 
the call
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Cooperation Synchronization

• Cooperation between processes is still a 
programming task
– Programmer must guarantee that a shared 

bufer does not experience underfow or 
overfow
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Evaluation of Monitors

• A better way to provide competition 
synchronization than are semaphores

• Semaphores can be used to implement 
monitors

• Monitors can be used to implement 
semaphores

• Support for cooperation synchronization is 
very similar as with semaphores, so it has 
the same problems
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Message Passing

• Message passing is a general model for 
concurrency
– It can model both semaphores and monitors
– It is not just for competition synchronization

• Central idea: task communication is like 
seeing a doctor--most of the time she 
waits for you or you wait for her, but when 
you are both ready, you get together, or 
rendezvous
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Message Passing Rendezvous

• To support concurrent tasks with message 
passing, a language needs:

- A mechanism to allow a task to indicate when it 
is willing to accept messages

- A way to remember who is waiting to have its 
message accepted and some “fair” way of 
choosing the next message

• When a sender task’s message is accepted by a 
receiver task, the actual message transmission is 
called a rendezvous 
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Rendezvous Time Lines
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Message Passing: Server/Actor Tasks

• A task that has accept clauses, but no other 
code is called a server task (the example 
above is a server task)

• A task without accept clauses is called an 
actor task
– An actor task can send messages to other 

tasks
– Note: A sender must know the entry name of 

the receiver, but not vice versa (asymmetric)
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Graphical Representation of a 
Rendezvous
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Java Threads

• The concurrent units in Java are methods named 
run
– A run method code can be in concurrent execution with 

other such methods
– The process in which the run methods execute is called 

a thread

class myThread extends Thread

public void run () {…}

}

…

Thread myTh = new MyThread ();

myTh.start();
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Controlling Thread Execution

• The Thread class has several methods to 
control the execution of threads
– The yield is a request from the running 

thread to voluntarily surrender the processor
– The sleep method can be used by the caller of 

the method to block the thread
– The join method is used to force a method to 

delay its execution until the run method of 
another thread has completed its execution
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Thread Priorities

• A thread’s default priority is the same as 
the thread that create it
– If main creates a thread, its default priority is 
NORM_PRIORITY

• Threads defned two other priority 
constants, MAX_PRIORITY and MIN_PRIORITY

• The priority of a thread can be changed 
with the methods setPriority



Copyright © 2015 Pearson. All rights reserved. 1-30

Competition Synchronization with Java 
Threads
• A method that includes the synchronized 

modifer disallows any other method from 
running on the object while it is in execution
…
public synchronized void deposit( int i) {…}
public synchronized int fetch() {…}
…

• The above two methods are synchronized which 
prevents them from interfering with each other

• If only a part of a method must be run without 
interference, it can be synchronized thru 
synchronized statement
synchronized (expression) 
  statement
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Cooperation Synchronization with Java 
Threads

• Cooperation synchronization in Java is 
achieved via wait, notify, and notifyAll 
methods
– All methods are defned in Object, which is the 

root class in Java, so all objects inherit them

• The wait method must be called in a loop
• The notify method is called to tell one 

waiting thread that the event it was 
waiting has happened

• The notifyAll method awakens all of the 
threads on the object’s wait list
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Java’s Thread Evaluation

• Java’s support for concurrency is relatively 
simple but efective

• Not as powerful as Ada’s tasks
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Summary

• Concurrent execution can be at the instruction, 
statement, or subprogram level

• Physical concurrency: when multiple processors 
are used to execute concurrent units

• Logical concurrency: concurrent united are 
executed on a single processor

• Two primary facilities to support subprogram 
concurrency: competition synchronization and 
cooperation synchronization

• Mechanisms: semaphores, monitors, rendezvous, 
threads

• High-Performance Fortran provides statements for 
specifying how data is to be distributed over the 
memory units connected to multiple processors
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