
Concurrency



Copyright © 2015 Pearson. All rights reserved. 1-2

Introduction

• Concurrency can occur at four levels:
– Machine instruction level
– High-level language statement level
– Unit level
– Program level

• Because there are no language issues in 
instruction- and program-level 
concurrency, they are not addressed here



Copyright © 2015 Pearson. All rights reserved. 1-3

Multiprocessor Architectures

• Late 1950s - one general-purpose processor and 
one or more special-purpose processors for input 
and output operations

• Early 1960s - multiple complete processors, used 
for program-level concurrency

• Mid-1960s - multiple partial processors, used for 
instruction-level concurrency

• Single-Instruction Multiple-Data (SIMD) machines
• Multiple-Instruction Multiple-Data (MIMD) 

machines 
• A primary focus of this chapter is shared memory 

MIMD machines (multiprocessors)



Copyright © 2015 Pearson. All rights reserved. 1-4

Categories of Concurrency

• Categories of Concurrency:
– Physical concurrency - Multiple independent 

processors ( multiple threads of control)
– Logical concurrency - The appearance of 

physical concurrency is presented by time-
sharing one processor (software can be 
designed as if there were multiple threads of 
control) 

• Coroutines (quasi-concurrency) have a 
single thread of control

• A thread of control in a program is the 
sequence of program points reached as 
control fows through the program



Copyright © 2015 Pearson. All rights reserved. 1-5

Motivations for the Use of Concurrency

• Multiprocessor computers capable of physical 
concurrency are now widely used

• Even if a machine has just one processor, a 
program written to use concurrent execution can 
be faster than the same program written for 
nonconcurrent execution

• Involves a diferent way of designing software that 
can be very useful—many real-world situations 
involve concurrency

• Many program applications are now spread over 
multiple machines, either locally or over a network



Copyright © 2015 Pearson. All rights reserved. 1-6

Introduction to Subprogram-Level 
Concurrency
• A task or process or thread is a program 

unit that can be in concurrent execution 
with other program units

• Tasks difer from ordinary subprograms in 
that:
– A task may be implicitly started
– When a program unit starts the execution of a 

task, it is not necessarily suspended
– When a task’s execution is completed, control 

may not return to the caller

• Tasks usually work together



Copyright © 2015 Pearson. All rights reserved. 1-7

Two General Categories of Tasks

• Heavyweight tasks execute in their own 
address space 

• Lightweight tasks all run in the same 
address space – more efcient

• A task is disjoint if it does not 
communicate with or afect the execution 
of any other task in the program in any 
way 



Copyright © 2015 Pearson. All rights reserved. 1-8

Task Synchronization

• A mechanism that controls the order 
in which tasks execute

• Two kinds of synchronization
– Cooperation synchronization
– Competition synchronization

• Task communication is necessary for 
synchronization, provided by:
- Shared nonlocal variables
- Parameters
- Message passing



Copyright © 2015 Pearson. All rights reserved. 1-9

Kinds of synchronization

• Cooperation: Task A must wait for task B to 
complete some specifc activity before task 
A can continue its execution, e.g., the 
producer-consumer problem

• Competition: Two or more tasks must use 
some resource that cannot be 
simultaneously used, e.g., a shared counter
– Competition is usually provided by mutually 

exclusive access  (approaches are discussed 
later)           



Copyright © 2015 Pearson. All rights reserved. 1-10

Need for Competition Synchronization

Task A: TOTAL = TOTAL + 1
Task B: TOTAL = 2 * TOTAL

- Depending on order, there could be four diferent results



Copyright © 2015 Pearson. All rights reserved. 1-11

Scheduler

• Providing synchronization requires a 
mechanism for delaying task execution

• Task execution control is maintained by a 
program called the scheduler, which maps 
task execution onto available processors



Copyright © 2015 Pearson. All rights reserved. 1-12

Task Execution States

• New - created but not yet started
• Ready - ready to run but not currently 

running (no available processor)
• Running 
• Blocked - has been running, but 

cannot now continue (usually waiting 
for some event to occur)

• Dead - no longer active in any sense



Copyright © 2015 Pearson. All rights reserved. 1-13

Liveness and Deadlock

• Liveness is a characteristic that a program 
unit may or may not have
- In sequential code, it means the unit will
    eventually complete its execution

• In a concurrent environment, a task can 
easily lose its liveness

• If all tasks in a concurrent environment 
lose their liveness, it is called deadlock



Copyright © 2015 Pearson. All rights reserved. 1-14

Design Issues for Concurrency

• Competition and cooperation 
synchronization*

• Controlling task scheduling
• How can an application infuence task 

scheduling
• How and when tasks start and end 

execution
• How and when are tasks created
     * The most important issue



Copyright © 2015 Pearson. All rights reserved. 1-15

Methods of Providing Synchronization

• Semaphores
• Monitors
• Message Passing



Copyright © 2015 Pearson. All rights reserved. 1-16

Semaphores 

• Dijkstra - 1965
• A semaphore is a data structure consisting of a 

counter and a queue for storing task descriptors
– A task descriptor is a data structure that stores all of the 

relevant information about the execution state of the task

• Semaphores can be used to implement guards on 
the code that accesses shared data structures

• Semaphores have only two operations, wait and 
release (originally called P and V by Dijkstra)

• Semaphores can be used to provide both 
competition and cooperation synchronization



Copyright © 2015 Pearson. All rights reserved. 1-17

Evaluation of Semaphores

• Misuse of semaphores can cause failures 
in cooperation synchronization, e.g., the 
bufer will overfow if the wait of 
fullspots is left out

• Misuse of semaphores can cause failures 
in competition synchronization, e.g., the 
program will deadlock if the release of 
access is left out



Copyright © 2015 Pearson. All rights reserved. 1-18

Monitors

• Ada, Java, C#
• The idea: encapsulate the shared data 

and its operations to restrict access
• A monitor is an abstract data type for 

shared data



Copyright © 2015 Pearson. All rights reserved. 1-19

Competition Synchronization

• Shared data is resident in the monitor 
(rather than in the client units)

• All access resident in the monitor
– Monitor implementation guarantee 

synchronized access by allowing only one 
access at a time

– Calls to monitor procedures are implicitly 
queued if the monitor is busy at the time of 
the call



Copyright © 2015 Pearson. All rights reserved. 1-20

Cooperation Synchronization

• Cooperation between processes is still a 
programming task
– Programmer must guarantee that a shared 

bufer does not experience underfow or 
overfow



Copyright © 2015 Pearson. All rights reserved. 1-21

Evaluation of Monitors

• A better way to provide competition 
synchronization than are semaphores

• Semaphores can be used to implement 
monitors

• Monitors can be used to implement 
semaphores

• Support for cooperation synchronization is 
very similar as with semaphores, so it has 
the same problems



Copyright © 2015 Pearson. All rights reserved. 1-22

Message Passing

• Message passing is a general model for 
concurrency
– It can model both semaphores and monitors
– It is not just for competition synchronization

• Central idea: task communication is like 
seeing a doctor--most of the time she 
waits for you or you wait for her, but when 
you are both ready, you get together, or 
rendezvous



Copyright © 2015 Pearson. All rights reserved. 1-23

Message Passing Rendezvous

• To support concurrent tasks with message 
passing, a language needs:

- A mechanism to allow a task to indicate when it 
is willing to accept messages

- A way to remember who is waiting to have its 
message accepted and some “fair” way of 
choosing the next message

• When a sender task’s message is accepted by a 
receiver task, the actual message transmission is 
called a rendezvous 



Copyright © 2015 Pearson. All rights reserved. 1-24

Rendezvous Time Lines



Copyright © 2015 Pearson. All rights reserved. 1-25

Message Passing: Server/Actor Tasks

• A task that has accept clauses, but no other 
code is called a server task (the example 
above is a server task)

• A task without accept clauses is called an 
actor task
– An actor task can send messages to other 

tasks
– Note: A sender must know the entry name of 

the receiver, but not vice versa (asymmetric)



Copyright © 2015 Pearson. All rights reserved. 1-26

Graphical Representation of a 
Rendezvous



Copyright © 2015 Pearson. All rights reserved. 1-27

Java Threads

• The concurrent units in Java are methods named 
run
– A run method code can be in concurrent execution with 

other such methods
– The process in which the run methods execute is called 

a thread

class myThread extends Thread

public void run () {…}

}

…

Thread myTh = new MyThread ();

myTh.start();



Copyright © 2015 Pearson. All rights reserved. 1-28

Controlling Thread Execution

• The Thread class has several methods to 
control the execution of threads
– The yield is a request from the running 

thread to voluntarily surrender the processor
– The sleep method can be used by the caller of 

the method to block the thread
– The join method is used to force a method to 

delay its execution until the run method of 
another thread has completed its execution



Copyright © 2015 Pearson. All rights reserved. 1-29

Thread Priorities

• A thread’s default priority is the same as 
the thread that create it
– If main creates a thread, its default priority is 
NORM_PRIORITY

• Threads defned two other priority 
constants, MAX_PRIORITY and MIN_PRIORITY

• The priority of a thread can be changed 
with the methods setPriority



Copyright © 2015 Pearson. All rights reserved. 1-30

Competition Synchronization with Java 
Threads
• A method that includes the synchronized 

modifer disallows any other method from 
running on the object while it is in execution
…
public synchronized void deposit( int i) {…}
public synchronized int fetch() {…}
…

• The above two methods are synchronized which 
prevents them from interfering with each other

• If only a part of a method must be run without 
interference, it can be synchronized thru 
synchronized statement
synchronized (expression) 
  statement



Copyright © 2015 Pearson. All rights reserved. 1-31

Cooperation Synchronization with Java 
Threads

• Cooperation synchronization in Java is 
achieved via wait, notify, and notifyAll 
methods
– All methods are defned in Object, which is the 

root class in Java, so all objects inherit them

• The wait method must be called in a loop
• The notify method is called to tell one 

waiting thread that the event it was 
waiting has happened

• The notifyAll method awakens all of the 
threads on the object’s wait list



Copyright © 2015 Pearson. All rights reserved. 1-32

Java’s Thread Evaluation

• Java’s support for concurrency is relatively 
simple but efective

• Not as powerful as Ada’s tasks



Copyright © 2015 Pearson. All rights reserved. 1-33

Summary

• Concurrent execution can be at the instruction, 
statement, or subprogram level

• Physical concurrency: when multiple processors 
are used to execute concurrent units

• Logical concurrency: concurrent united are 
executed on a single processor

• Two primary facilities to support subprogram 
concurrency: competition synchronization and 
cooperation synchronization

• Mechanisms: semaphores, monitors, rendezvous, 
threads

• High-Performance Fortran provides statements for 
specifying how data is to be distributed over the 
memory units connected to multiple processors


	Slide 1
	Introduction
	Multiprocessor Architectures
	Categories of Concurrency
	Motivations for the Use of Concurrency
	Introduction to Subprogram-Level Concurrency
	Two General Categories of Tasks
	Task Synchronization
	Kinds of synchronization
	Need for Competition Synchronization
	Scheduler
	Task Execution States
	Liveness and Deadlock
	Design Issues for Concurrency
	Methods of Providing Synchronization
	Semaphores
	Evaluation of Semaphores
	Monitors
	Competition Synchronization
	Cooperation Synchronization
	Evaluation of Monitors
	Message Passing
	Message Passing Rendezvous
	Rendezvous Time Lines
	Message Passing: Server/Actor Tasks
	Graphical Representation of a Rendezvous
	Java Threads
	Controlling Thread Execution
	Thread Priorities
	Competition Synchronization with Java Threads
	Cooperation Synchronization with Java Threads
	Java’s Thread Evaluation
	Summary

