
Constructing a Parse Tree

Initial Conditions

Before we begin we need to have two things:

1. A Grammar
2. A string we wish to parse

So then what is the procedure:

1. Use the grammar to produce a derivation resulting in the given
string

2. Use the derivation to produce the parse tree

Example 1:

We have the following grammar:

<S> ::= <round> <square> | <outer>
<round> ::= (<round>) | ()
<square> ::= [<square>] | []
<outer> ::= (<outer>] | (<inner>]
<inner> ::=) <inner> [|) [

We will derive the following string: (())[[]]

Example 1: Producing the derivation

A derivation is produce using the following steps:

1. Start with the start rule and select one of its options
2. We then continue to replace each rule until we reach a terminal

working from left to right.
3. We repeat step 2 until all non-terminals are replaced by

terminals, and we have produced the target string.

Goal: Derive (()) [[]]

<S> => <round> <square>
=> (<round>) <square>
=> (()) <square>
=> (()) [<square>]
=> (()) [[]] --> Finished

Example 1: Producing the parse tree

<S> => <round> <square> <S>
/ \

<round> <square>
=> (<round>) <square> / | \ / | \

(<round>) / | \
=> (()) <square> / \ | | \

() | | \
=> (()) [<square>] [<square>]
=> (()) [[]] / \

[]

Example 2

Grammar:

<S1> ::= <S1> + <S2> | <S2>
<S2> ::= <S2> * <S3> | <S3>
<S3> ::= (<S1>) | a | b | c

String: a + b * c

Example 2: Derivation

Goal: Derive a + b * c

<S1> => <S1> + <S2>
=> <S2> + <S2>
=> <S3> + <S2>
=> a + <S2>
=> a + <S2> * <S3>
=> a + <S3> * <S3>
=> a + b * <S3>
=> a + b * c

Example 2: Parse tree

<S1> => <S1> + <S2> <S1>
/ | \

<S1> + <S2>
=> <S2> + <S2> | / | \

<S2> / | \
=> <S3> + <S2> | / | \

<S3> | | |
=> a + <S2> | | | |

a | | |
=> a + <S2> * <S3> <S2> * <S3>
=> a + <S3> * <S3> | |

<S3> |
=> a + b * <S3> | |

b |
=> a + b * c c

We can also derive a string from the bottom up

Goal: Use Example 2 grammar to derive a + b * c

In This case we start with the rightmost terminal and continue to
replace with non-terminals until we reach the start rule.

=> a + b * c
=> a + b * <S3>
=> a + <S3> * <S3>
=> a + <S2> * <S3>
=> a + <S2>
=> <S3> + <S2>
=> <S2> + <S2>
=> <S1> + <S2>

<S1> => <S1> + <S2>

We then build the parse tree starting from the bottom

Constructing Abstract Syntax Trees

Parse Trees to ASTs

An Abstract Syntax Tree (AST) is a simplified form of a Parse Tree
which is useful for interpreting/converting code from one language
to another. Thus, it is useful for the compiling process.

An AST typically is a Binary Tree and requires that there are no
non-terminal symbols left in the tree, and this then requires that we
have the following:

I A Parse Tree
I A notion of traversing the tree (we will assume an In Order

traversal)

The Conversion Process

<S1>
/ | \

<S1> + <S2>
| / | \

<S2> / | \
| / | \

<S3> | | |
| | | |
a | | |

<S2> * <S3>
| |

<S3> |
| |
b |

c

Example

<S1> <S1>
/ | \ / | \

<S1> + <S2> a + <S2>
| / | \ / | \

<S2> / | \ / | \
| / | \ / | \

<S3> | | | | | |
| | | | | | |
a | | | | | |

<S2> * <S3> <S2> * <S3>
| | | |

<S3> | <S3> |
| | | |
b | b |

c c

Example

<S1> <S1>
/ | \ / | \

<S1> + <S2> a + <S2>
| / | \ / | \

<S2> / | \ b | \
| / | \ | \

<S3> | | | | |
| | | | | |
a | | | | |

<S2> * <S3> * <S3>
| | |

<S3> | |
| | |
b | |

c c

Example

<S1> <S1>
/ | \ / | \

<S1> + <S2> a + <S2>
| / | \ / | \

<S2> / | \ b * \
| / | \ \

<S3> | | | |
| | | | |
a | | | |

<S2> * <S3> <S3>
| | |

<S3> | |
| | |
b | |

c c

Example

<S1> <S1>
/ | \ / | \

<S1> + <S2> a + <S2>
| / | \ / | \

<S2> / | \ b * c
| / | \

<S3> | | |
| | | |
a | | |

<S2> * <S3>
| |

<S3> |
| |
b |

c

Example

<S1> <S1>
/ | \ / | \

<S1> + <S2> a + *
| / | \ / \

<S2> / | \ b c
| / | \

<S3> | | |
| | | |
a | | |

<S2> * <S3>
| |

<S3> |
| |
b |

c

Example

<S1> +
/ | \ / \

<S1> + <S2> a *
| / | \ / \

<S2> / | \ b c
| / | \

<S3> | | |
| | | |
a | | |

<S2> * <S3>
| |

<S3> |
| |
b |

c

Example

<S>
/ \

<round> <square>
/ | \ / | \

(<round>) / | \
/ \ | | \

() | | \
[<square>]

/ \
[]

Example

<S> <S>
/ \ / \

<round> <square> <round> <square>
/ | \ / | \ / | \ / | \

(<round>) / | \ (<round>) / | \
/ \ | | \ / \ | | \

() | | \ () | | \
[<square>] [<square>]

/ \ / \
[] []

Example

<S> <S>
/ \ / \

<round> <square> <round> <square>
/ | \ / | \ / | \ / | \

(<round>) / | \ ()) / | \
/ \ | | \ / | | \

() | | \ (| | \
[<square>] [<square>]

/ \ / \
[] []

Example

<S> <S>
/ \ / \

<round> <square>) <square>
/ | \ / | \ / | \ / | \

(<round>) / | \ (() / | \
/ \ | | \ | | \

() | | \ | | \
[<square>] [<square>]

/ \ / \
[] []

Example

<S>)
/ \ / \

<round> <square> (<square>
/ | \ / | \ / \ / | \

(<round>) / | \ () / | \
/ \ | | \ | | \

() | | \ | | \
[<square>] [<square>]

/ \ / \
[] []

Example

<S>)
/ \ / \

<round> <square> (<square>
/ | \ / | \ / \ / | \

(<round>) / | \ () / | \
/ \ | | \ | | |

() | | \ | | |
[<square>] []]

/ \ /
[] [

Example

<S>)
/ \ / \

<round> <square> (<square>
/ | \ / | \ / \ / | \

(<round>) / | \ () []]
/ \ | | \ /

() | | \ [
[<square>]

/ \
[]

Example

<S>)
/ \ / \

<round> <square> (]
/ | \ / | \ / \ / | \

(<round>) / | \ () [[]
/ \ | | \

() | | \
[<square>]

/ \
[]

Example

<S>)
/ \ / \

<round> <square> (]
/ | \ / | \ / \ / \

(<round>) / | \ () []
/ \ | | \ /

() | | \ [
[<square>]

/ \
[]

	Constructing a Parse Tree
	Constructing Abstract Syntax Trees

