Constructing a Parse Tree

Initial Conditions

Before we begin we need to have two things:

1. A Grammar
2. A string we wish to parse

So then what is the procedure:

1. Use the grammar to produce a derivation resulting in the given string
2. Use the derivation to produce the parse tree

Example 1:

We have the following grammar:

```
<S> ::= <round> <square> | <outer>
<round> ::= ( <round> ) | ( )
<square> ::= [ <square> ] | [ ]
<outer> ::= ( <outer> ] | ( <inner> ]
<inner> ::= ) <inner> [ | ) [
```

We will derive the following string: (())[[]]

Example 1: Producing the derivation

A derivation is produce using the following steps:

1. Start with the start rule and select one of its options
2. We then continue to replace each rule until we reach a terminal working from left to right.
3. We repeat step 2 until all non-terminals are replaced by terminals, and we have produced the target string.

Goal: Derive (()) [[]]

```
<S> => <round> <square>
    => ( <round> ) <square>
    => ( ( ) ) <square>
    => ( ( ) ) [ <square> ]
    => ( ( ) ) [ [ ] ] --> Finished
```


Example 1: Producing the parse tree

```
<S> => <round> <square>
<round> <square>
=> ( <round> ) <square>
=> ( ( ) ) <square>
=> ( ( ) ) [ <square> ]
=> ( ( ) ) [ [ ] ]
```


Example 2

Grammar:

$$
\begin{aligned}
& \text { <S1> : : }=\text { <S1> + <S2> | <S2> } \\
& \text { <S2> ::= <S2> * <S3> | <S3> } \\
& \text { <S3> ::= (<S1>) | a | b | c }
\end{aligned}
$$

String: $\mathrm{a}+\mathrm{b} * \mathrm{c}$

Example 2: Derivation

Goal: Derive $\mathrm{a}+\mathrm{b} * \mathrm{c}$

$$
\begin{aligned}
& \text { <S1> => <S1> + <S2> } \\
& \text { => <S2> + <S2> } \\
& \text { => <S3> + <S2> } \\
& \Rightarrow \mathrm{a}+\langle\mathrm{S} 2> \\
& \text { => } \mathrm{a}+\langle\mathrm{S} 2\rangle *<\text { S3> } \\
& \Rightarrow \mathrm{a}+\langle\text { S3> * <S3> } \\
& \Rightarrow \mathrm{a}+\mathrm{b} *<\text { S3> } \\
& \Rightarrow \mathrm{a}+\mathrm{b} * \mathrm{c}
\end{aligned}
$$

Example 2: Parse tree

$$
\begin{aligned}
& \text { <S1> => <S1> + <S2> } \\
& \text { => <S2> + <S2> } \\
& \text { => <S3> + <S2> } \\
& =>a+\langle S 2> \\
& \Rightarrow \mathrm{a}+\langle\mathrm{S} 2\rangle *<\text { S3 }\rangle \\
& \text { => } \mathrm{a}+\langle\mathrm{S} 3>\text { * <S3> } \\
& =>\mathrm{a}+\mathrm{b} *<\mathrm{S} 3> \\
& \Rightarrow \mathrm{a}+\mathrm{b} * \mathrm{c}
\end{aligned}
$$

We can also derive a string from the bottom up

Goal: Use Example 2 grammar to derive $\mathrm{a}+\mathrm{b} * \mathrm{c}$ In This case we start with the rightmost terminal and continue to replace with non-terminals until we reach the start rule.

$$
\begin{aligned}
& \Rightarrow \mathrm{a}+\mathrm{b} * \mathrm{c} \\
& \Rightarrow \mathrm{a}+\mathrm{b} *<\mathrm{S} 3> \\
& \text { => } \mathrm{a}+\langle\mathrm{S} 3>\text { * <S3> } \\
& \text { => } \mathrm{a}+\text { <S2> * <S3> } \\
& \Rightarrow \mathrm{a}+\langle\mathrm{S} 2\rangle \\
& \text { => <S3> + <S2> } \\
& \text { => <S2> + <S2> } \\
& \text { => <S1> + <S2> } \\
& \text { <S1> => <S1> + <S2> }
\end{aligned}
$$

We then build the parse tree starting from the bottom

Constructing Abstract Syntax Trees

Parse Trees to ASTs

An Abstract Syntax Tree (AST) is a simplified form of a Parse Tree which is useful for interpreting/converting code from one language to another. Thus, it is useful for the compiling process.

An AST typically is a Binary Tree and requires that there are no non-terminal symbols left in the tree, and this then requires that we have the following:

- A Parse Tree
- A notion of traversing the tree (we will assume an In Order traversal)

The Conversion Process

Example

<S1>				<S1>			
/	\|	\backslash		/	\|	\backslash	
<S1>	+	<S2>		a	+	<S2>	
\|	/	I	1		/	I	\backslash
<S2>	1	1	1		1	1	\backslash
\|	1	1	\backslash		1	I	\backslash
<S3>	1	I	I		I	I	1
।	1	I	I		I	1	I
a	।	1	I		।	I	I
	<S2>	*	<S3>		<S2>	*	<S3>
	\|		I		1		।
	<S3>		1		<S3>		I
	I		1		I		I
	b		1		b		1
			c				c

Example

<S1>				<S1>				
/	।	\backslash		/	\|	\backslash		
<S1>	+	<S2>		a	+	<S2>		
\|	/	\|	\backslash		/	\|	\backslash	
<S2>	1	1	1		b	I	\backslash	
\|	1	1	\backslash			I	\backslash	
<S3>	1	1	1			I	1	
\|	I	I	1			\\|	I	
a	।	1	I			I	।	
	<S2>	*	<S3>			*	<S3>	
	\|		\|				1	
	<S3>		1				।	
	\|		1				I	
	b		1				1	
			c				c	

Example

<S1>				<S1>			
/	।	\backslash		/	\|	\backslash	
<S1>	+	<S2>		a	+	<S2>	
\|	/	\|	\backslash		/	\|	\backslash
<S2>	1	1	1		b	*	\backslash
\|	1	1	\backslash				\backslash
<S3>	1	1	1				1
\|	I	I	1				I
a	।	1	I				।
	<S2>	*	<S3>				<S3>
	\|		\|				\|
	<S3>		1				।
	\|		1				I
	b		1				1
			c				c

Example

<S1>				<S1>			
1	\|	\backslash		/	I	\backslash	
<S1>	+	<S2>		a	+	<S2>	
\|	/	I	1		1	1	\backslash
<S2>	1	1	1		b	*	c
\|	1	1	\backslash				
<S3>	I	1	1				
I	1	1	1				
a	\|	1	1				
	<S2>	*	<S3>				
	\|		1				
	<S3>		1				
	\|		1				
	b		1				
			c				

Example

<S1>				<S1>		
/	\|	\backslash		1	I	\backslash
<S1>	+	<S2>		a	$+$	*
\|	1	I	1			/ \}
<S2>	1	1	\backslash			b c
\|	1	1	\backslash			
<S3>	1	I	1			
\|	I	1	1			
a	\|	1	1			
	<S2>	*	<S3>			
	\|		I			
	<S3>		1			
	I		1			
	b		1			
			c			

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

