A Third Look At Prolog

Outline

- Numeric computation in Prolog
- Problem space search
- Knapsack
- 8-queens
- Farewell to Prolog

Unevaluated Terms

- Prolog operators allow terms to be written more concisely, but are not evaluated
- These are all the same Prolog term:
$+(1, *(2,3))$
1+ * $(2,3)$
$+(1,2 * 3)$
(1+(2*3))
$1+2$ * 3
- That term does not unify with 7

Evaluating Expressions

$$
\begin{aligned}
& \mathbf{?}-X \text { is } 1+2 * 3 \\
& \mathbf{x}=\mathbf{7}
\end{aligned}
$$

- The predefined predicate is can be used to evaluate a term that is a numeric expression
- is (\mathbf{X}, \mathbf{Y}) evaluates the term \mathbf{Y} and unifies \mathbf{X} with the resulting atom
- It is usually used as an operator

Instantiation Is Required

$$
\begin{aligned}
& ?-Y=X+2, X=1 . \\
& \mathbf{Y}=1+2, \\
& \mathbf{X}=1 . \\
& ?-Y \text { is } X+2, X=1 . \\
& \text { ERROR: is/2: Arguments are not sufficiently instantiated } \\
& ?-X=1, Y \text { is } X+2 . \\
& \mathbf{X}=1, \\
& \mathbf{Y}=3 .
\end{aligned}
$$

Evaluable Predicates

\square For \mathbf{X} is \mathbf{Y}, the predicates that appear in \mathbf{Y} have to be evaluable predicates

- This includes things like the predefined operators $\boldsymbol{+},-$, * and /
- There are also other predefined evaluable predicates, like abs(Z) and sqrt(Z)

Real Values And Integers

```
?- X is 1/2.
X = 0.5.
?- X is 1.0/2.0.
X = 0.5.
?- X is 2/1.
x = 2.
?- X is 2.0/1.0.
x = 2.0.
```

There are two numeric types: integer and real.

Most of the evaluable predicates are overloaded for all combinations.

Prolog is dynamically typed; the types are used at runtime to resolve the overloading.

But note that the goal 2=2.0 would fail.

Comparisons

- Numeric comparison operators:

$$
<,>,=<,>=,=:=,=\backslash=
$$

- To solve a numeric comparison goal, Prolog evaluates both sides and compares the results numerically
- So both sides must be fully instantiated

Comparisons

$$
\begin{aligned}
& ?-1+2<1 * 2 . \\
& \text { false. } \\
& \text { ?- } 1<2 . \\
& \text { true. } \\
& \text { ?- } 1+2>=1+3 . \\
& \text { false. } \\
& \mathbf{?}-X \text { is } 1-3, Y \text { is } 0-2, X=:=Y \text {. } \\
& \mathbf{X}=-2, \\
& \mathbf{Y}=-2 .
\end{aligned}
$$

Equalities In Prolog

- We have used three different but related equality operators:
- \mathbf{X} is \mathbf{Y} evaluates \mathbf{Y} and unifies the result with \mathbf{X} :

3 is $\mathbf{1 + 2}$ succeeds, but $1+2$ is 3 fails
$-\mathbf{X}=\mathbf{Y}$ unifies \mathbf{X} and \mathbf{Y}, with no evaluation: both
$3=1+2$ and $1+2=3$ fail
$-\mathbf{X}=:=\mathbf{Y}$ evaluates both and compares: both
$3=:=1+2$ and $1+2=:=3$ succeed
(and so does $1=:=1.0$)

- Any evaluated term must be fully instantiated

Example: mylength

```
mylength([],0).
mylength([_|Tail], Len) :-
    mylength(Tail, TailLen),
    Len is TailLen + 1.
```

```
?- mylength([a,b,c],X).
x = 3.
?- mylength(X,3).
X = [_G266, _G269, _G272] .
```


Counterexample: mylength

```
mylength([],0).
mylength([_|Tail], Len) :-
    mylength(Tail, TailLen),
    Len = TailLen + 1.
```

```
?- mylength([1,2,3,4,5],X).
x = 0+1+1+1+1+1.
```


Example: sum

```
sum([],0).
sum([Head|Tail],X) :-
    sum(Tail,TailSum),
    X is Head + TailSum.
```

```
?- sum([1,2,3],X).
x = 6.
?- sum([1,2.5,3],X).
x = 6.5.
```


Example: gcd

```
gcd(\mathbf{x, Y, Z) :- « Note: not just}
    X =:= Y,
    Z is X.
gcd(X,Y,Denom) :-
    X < Y,
    NewY is Y - X,
    gcd (X,NewY,Denom).
gcd (X,Y,Denom) :-
    X > Y,
    NewX is X - Y,
    gcd(NewX, Y, Denom).
```


The gcd Predicate At Work

```
?- gcd(5,5,X).
x = 5 .
?- gcd(12,21,X).
x = 3 .
?- gcd(91,105,X).
x = 7 .
?- gcd(91,X,7).
ERROR: Arguments are not sufficiently instantiated
```


Cutting Wasted Backtracking

```
gcd(X,Y,Z) :-
    X =:= Y,
    Z is X,
    !.
gcd(X,Y,Denom) :-
    X < Y,
    NewY is Y - X,
    gcd(X,NewY,Denom),
    !.
gcd(X,Y,Denom) :-
    X > Y, « With those cuts, this test is
    NewX is X - Y,
    gcd (NewX, Y, Denom).
```

If this rule succeeds, there's no point in trying the others

Same here.

With those cuts, this test is
unnecessary (but we'll leave it there).

Example: fact

$$
\begin{aligned}
& \text { fact }(\mathrm{X}, 1):- \\
& \mathrm{X}=:=1, \\
& ! \\
& \text { fact }(\mathrm{X}, \text { Fact }):- \\
& \mathrm{X}>1, \\
& \text { New is } \mathrm{X}-1, \\
& \text { fact }(\text { New }, \mathrm{NF}), \\
& \text { Fact is } \mathrm{X} * \mathrm{NF} .
\end{aligned}
$$

```
?- fact (5,X).
x = 120.
?- fact (20,X).
x = 2432902008176640000.
?- fact (-2,X).
false.
```


Outline

- Numeric computation in Prolog
 - Problem space search
 - Knapsack
 - 8-queens
 - Farewell to Prolog

Problem Space Search

- Prolog's strength is (obviously) not numeric computation
- The kinds of problems it does best on are those that involve problem space search
- You give a logical definition of the solution
- Then let Prolog find it

The Knapsack Problem

- You are packing for a camping trip
- Your pantry contains these items:

Item	Weight in kilograms	Calories
bread	4	9200
pasta	2	4600
peanut butter	1	6700
baby food	3	6900

- Your knapsack holds 4 kg .
\square What choice $<=4 \mathrm{~kg}$. maximizes calories?

Greedy Methods Do Not Work

Item	Weight in kilograms	Calories
bread	4	9200
pasta	2	4600
peanut butter	1	6700
baby food	3	6900

- Most calories first: bread only, 9200
- Lightest first: peanut butter + pasta, 11300
- (Best choice: peanut butter + baby food, 13600)

Search

- No algorithm for this problem is known that
- Always gives the best answer, and
- Takes less than exponential time
- So brute-force search is nothing to be ashamed of here
- That's good, since search is something Prolog does really well

Representation

\square We will represent each food item as a term food ($\mathbf{N}, \mathbf{W}, \mathrm{C}$)

- Pantry in our example is
[food (bread, 4, 9200), food (pasta, 2, 4500), food (peanutButter, 1, 6700), food (babyFood, 3, 6900)]
- Same representation for knapsack contents

```
/*
    weight(L,N) takes a list L of food terms, each
    of the form food(Name,Weight,Calories). We
    unify N with the sum of all the Weights.
*/
weight([],0).
weight([food(_,W,_) | Rest], X) :-
    weight(Rest,RestW),
    X is W + RestW.
    /*
        calories(L,N) takes a list L of food terms, each
        of the form food(Name,Weight,Calories). We
        unify N with the sum of all the Calories.
*/
calories([],0).
calories([food(_,_,C) | Rest], x) :-
    calories (Rest,RestC),
    X is C + RestC.
```

```
/*
    subseq(X,Y) succeeds when list X is the same as
    list Y, but with zero or more elements omitted.
    This can be used with any pattern of instantiations.
*/
subseq([],[]).
subseq([Item | RestX], [Item | RestY]) :-
    subseq(RestX,RestY).
subseq(X, [_ | RestY]) :-
    subseq(X,RestY).
```

- A subsequence of a list is a copy of the list with any number of elements omitted
- (Knapsacks are subsequences of the pantry)

```
?- subseq([1,3], [1, 2, 3, 4]).
```

true.
?- subseq $(X,[1,2,3])$.
$\mathrm{X}=[1,2,3]$;
$\mathrm{x}=[1,2]$;
$\mathrm{x}=[1,3]$;
$\mathrm{X}=[1]$;
$\mathrm{x}=[2,3]$;
$\mathrm{x}=[2]$;
$\mathrm{x}=[3]$;
$\mathrm{x}=[]$;
false.

Note that subseq can do more than just test whether one list is a subsequence of another; it can generate subsequences, which is how we will use it for the knapsack problem.

```
/*
    knapsackDecision(Pantry,Capacity,Goal,Knapsack) takes
    a list Pantry of food terms, a positive number
    Capacity, and a positive number Goal. We unify
    Knapsack with a subsequence of Pantry representing
    a knapsack with total calories >= goal, subject to
    the constraint that the total weight is =< Capacity.
*/
knapsackDecision(Pantry,Capacity,Goal,Knapsack) :-
    subseq(Knapsack,Pantry),
    weight(Knapsack,Weight),
    Weight =< Capacity,
    calories(Knapsack,Calories),
    Calories >= Goal.
```

```
?- knapsackDecision(
    [food(bread, 4, 9200),
        food(pasta,2,4500),
        food(peanutButter,1,6700),
        food(babyFood, 3, 6900)],
    4,
    10000,
    X).
X = [food(pasta, 2, 4500),
    food(peanutButter, 1, 6700)].
```

- This decides whether there is a solution that meets the given calorie goal
- Not exactly the answer we want...

Decision And Optimization

- We solved the knapsack decision problem
- What we wanted to solve was the knapsack optimization problem
\square To do that, we will use another predefined predicate: findall

The findall Predicate

findall(X,Goal, L)

- Finds all the ways of proving Goal
- For each, applies to \mathbf{X} the same substitution that made a provable instance of Goal
- Unifies \mathbf{L} with the list of all those X's

Counting The Solutions

```
?- findall(1, subseq(_,[1,2]),L).
L = [1, 1, 1, 1].
```

- This shows there were four ways of proving subseq (_, [1, 2])
- Collected a list of 1's, one for each proof

Collecting The Instances

```
?- findall(subseq(X,[1,2]), subseq(X,[1,2]),L).
L = [subseq([1, 2], [1, 2]), subseq([1], [1, 2]),
    subseq([2], [1, 2]), subseq([], [1, 2])].
```

- The first and second parameters to findall are the same
- This collects all four provable instances of the goal subseq ($\mathbf{X},[1,2]$)

Collecting Particular Substitutions

```
?- findall(X,subseq(X,[1,2]),L).
L = [[1, 2], [1], [2], []].
```

- A common use of f indall: the first parameter is a variable from the second
- This collects all four \mathbf{X} 's that make the goal subseq ($\mathrm{X},[1,2]$) provable
/*
legalKnapsack (Pantry, Capacity,Knapsack) takes a list Pantry of food terms and a positive number Capacity. We unify Knapsack with a subsequence of Pantry whose total weight is $=<$ Capacity.
*/
legalKnapsack (Pantry, Capacity, Knapsack) : subseq (Knapsack, Pantry),
weight (Knapsack, W), W =< Capacity.

```
/*
    maxCalories(List,Result) takes a List of lists of
    food terms. We unify Result with an element from the
    list that maximizes the total calories. We use a
    helper predicate maxC that takes four paramters: the
    remaining list of lists of food terms, the best list
    of food terms seen so far, its total calories, and
    the final result.
    */
    maxC([],Sofar,_,Sofar).
    maxC([First | Rest],_,MC,Result) :-
    calories(First,FirstC),
    MC =< FirstC,
    maxC(Rest,First,FirstC,Result).
maxC([First | Rest],Sofar,MC,Result) :-
    calories (First, FirstC),
    MC > FirstC,
    maxC(Rest, Sofar,MC,Result) .
maxCalories([First | Rest],Result) :-
    calories (First,FirstC),
    maxC(Rest,First,FirstC,Result).
```

```
/*
    knapsackOptimization(Pantry,Capacity,Knapsack) takes
    a list Pantry of food items and a positive integer
    Capacity. We unify Knapsack with a subsequence of
    Pantry representing a knapsack of maximum total
    calories, subject to the constraint that the total
    weight is =< Capacity.
*/
knapsackOptimization(Pantry,Capacity,Knapsack) :-
    findall(K, legalKnapsack(Pantry,Capacity,K) ,L),
    maxCalories(L,Knapsack).
```

```
?- knapsackOptimization(
        [food(bread, 4, 9200),
        food(pasta,2,4500),
        food(peanutButter,1,6700),
        food(babyFood, 3, 6900)],
        4,
        Knapsack).
Knapsack = [food(peanutButter, 1, 6700),
                        food (babyFood, 3, 6900)] .
```


Outline

- Numeric computation in Prolog
 - Problem space search

- Knapsack
- 8-queens
- Farewell to Prolog

The 8-Queens Problem

- Chess background:
- Played on an 8-by-8 grid
- Queen can move any number of spaces vertically, horizontally or diagonally
- Two queens are in check if they are in the same row, column or diagonal, so that one could move to the other's square
- The problem: place 8 queens on an empty chess board so that no queen is in check

Representation

- We could represent a queen in column 2, row 5 with the term queen $(2,5)$
\square But it will be more readable if we use something more compact
- Since there will be no other pieces-no pawn (\mathbf{X}, \mathbf{Y}) or king (\mathbf{X}, \mathbf{Y}) -we will just use a term of the form \mathbf{X} / \mathbf{Y}
- (We won't evaluate it as a quotient)

Example

- A chessboard configuration is just a list of queens
\square This one is $[2 / 5,3 / 7,6 / 1]$

```
/*
    nocheck (X/Y,L) takes a queen X/Y and a list
    of queens. We succeed if and only if the X/Y
    queen holds none of the others in check.
*/
nocheck(_, []).
nocheck(X/Y, [X1/Y1 | Rest]) :-
    X =\= X1,
    Y =\= Y1,
    abs(Y1-Y) =\= abs(X1-X),
    nocheck(X/Y, Rest).
```

```
/*
    legal(L) succeeds if L is a legal placement of
    queens: all coordinates in range and no queen
    in check.
    */
legal([]).
legal([X/Y | Rest]) :-
    legal (Rest),
    member(X, [1, 2, 3, 4, 5, 6, 7, 8]) ,
    member(Y, [1, 2, 3, 4,5,6,7, 8]) ,
    nocheck(X/Y, Rest).
```


Adequate

- This is already enough to solve the problem: the query legal (X) will find all legal configurations:

```
?- legal(X).
x = [] ;
x = [1/1] ;
x = [1/2] ;
x = [1/3] ;
etc.
```


8-Queens Solution

- Of course that will take too long: it finds all 64 legal 1-queens solutions, then starts on the 2 -queens solutions, and so on
- To make it concentrate right away on 8 -queens, we can give a different query:

```
?- X = [_,_'_'_'_'_'_'_], legal (X).
x = [8/4, 7/2, 6/7, 5/3, 4/6, 3/8, 2/5, 1/1].
```


Example

- Our 8-queens solution
- [8/4, 7/2, 6/7, 5/3, 4/6, 3/8, 2/5, 1/1]

Room For Improvement

- Slow

Finds trivial permutations after the first:

```
?- X = [_\prime_\prime_,_\prime_\prime_'_\prime_], legal (X).
X = [8/4, 7/2, 6/7, 5/3, 4/6, 3/8, 2/5, 1/1] ;
X = [7/2, 8/4, 6/7, 5/3, 4/6, 3/8, 2/5, 1/1] ;
X = [8/4, 6/7, 7/2, 5/3, 4/6, 3/8, 2/5, 1/1] ;
X = [6/7, 8/4, 7/2, 5/3, 4/6, 3/8, 2/5, 1/1];
etc.
```


An Improvement

- Clearly every solution has 1 queen in each column
- So every solution can be written in a fixed order, like this:
x=[1/_,2/_,3/_,4/,,5/_,6/_,7/_,8/_]
- Starting with a goal term of that form will restrict the search (speeding it up) and avoid those trivial permutations

```
/*
    eightqueens(X) succeeds if X is a legal
    placement of eight queens, listed in order
    of their X coordinates.
*/
eightqueens(X) :-
    X = [1/_,2/_,3/_,4/_,5/_,6/_,7/_,8/_],
    legal(X).
```

```
nocheck(_, []).
nocheck(X/Y, [X1/Y1 | Rest]) :-
    % X =\= X1, assume the X's are distinct
    Y =\= Y1,
    abs(Y1-Y) =\= abs(X1-X),
    nocheck(X/Y, Rest).
```

legal([]).
legal([X/Y | Rest]) :-
legal (Rest),
\% member ($\mathrm{X},[1,2,3,4,5,6,7,8]$), assume X in range member ($\mathrm{Y},[1,2,3,4,5,6,7,8]$), nocheck (X/Y, Rest).

- Since all X-coordinates are already known to be in range and distinct, these can be optimized a little

Improved 8-Queens Solution

- Now much faster
- Does not bother with permutations

```
?- eightqueens(X).
X = [1/4, 2/2, 3/7, 4/3, 5/6, 6/8, 7/5, 8/1] ;
x = [1/5, 2/2, 3/4, 4/7, 5/3, 6/8, 7/6, 8/1] ;
etc.
```


An Experiment

legal([]).
legal([X/Y| Rest]) :legal (Rest),
\% member ($\mathrm{X},[1,2,3,4,5,6,7,8]$), assume X in range $1=<Y, Y=<8$, \% was member ($Y,[1,2,3,4,5,6,7,8]$), nocheck (X/Y, Rest).

- Fails: "arguments not sufficiently instantiated"
- The member condition does not just test in-range coordinates; it generates them

Another Experiment

legal([]).
legal([X/Y | Rest]) :-
\% member ($\mathrm{X},[1,2,3,4,5,6,7,8]$), assume X in range member ($Y,[1,2,3,4,5,6,7,8]$), nocheck (X / Y, Rest),
legal (Rest). \% formerly the first condition

- Fails: "arguments not sufficiently instantiated"
- The legal (Rest) condition must come first, because it generates the partial solution tested by nocheck

Outline

■ Numeric computation in Prolog
 ■ Problem space search
 - Knapsack
 - 8-queens
 - Farewell to Prolog

Parts We Skipped

- Some control predicate shortcuts
- -> for if-then and if-then-else
- ; for a disjunction of goals
- Exception handling
- System-generated or user-generated exceptions
- throw and catch predicates
\square The API
- A small ISO API; most systems provide more
- Many public Prolog libraries: network and file I/O, graphical user interfaces, etc.

A Small Language

- We did not have to skip as much of Prolog as we did of ML and Java
- Prolog is a small language
- Yet it is powerful and not easy to master
- The most important things we skipped are the techniques Prolog programmers use to get the most out of it

