
A Third Look At Prolog

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 1

Outline

� Numeric computation in Prolog

� Problem space search

– Knapsack

– 8-queens

� Farewell to Prolog

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 2

Unevaluated Terms

� Prolog operators allow terms to be written

more concisely, but are not evaluated

� These are all the same Prolog term:

� That term does not unify with 7

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 3

+(1,*(2,3))
1+ *(2,3)
+(1,2*3)
(1+(2*3))
1+2*3

Evaluating Expressions

� The predefined predicate is can be used to
evaluate a term that is a numeric expression

� is(X,Y) evaluates the term Y and unifies
X with the resulting atom

� It is usually used as an operator

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 4

?- X is 1+2*3.

X = 7.

Instantiation Is Required

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 5

?- Y=X+2, X=1.

Y = 1+2,
X = 1.

?- Y is X+2, X=1.

ERROR: is/2: Arguments are not sufficiently instantiated
?- X=1, Y is X+2.

X = 1,
Y = 3.

Evaluable Predicates

� For X is Y, the predicates that appear in Y
have to be evaluable predicates

� This includes things like the predefined

operators +, -, * and /

� There are also other predefined evaluable

predicates, like abs(Z) and sqrt(Z)

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 6

Real Values And Integers

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 7

?- X is 1/2.

X = 0.5.

?- X is 1.0/2.0.

X = 0.5.

?- X is 2/1.

X = 2.

?- X is 2.0/1.0.

X = 2.0.

There are two numeric types:

integer and real.

Most of the evaluable

predicates are overloaded for

all combinations.

Prolog is dynamically typed;

the types are used at runtime

to resolve the overloading.

But note that the goal 2=2.0
would fail.

Comparisons

� Numeric comparison operators:

<, >, =<, >=, =:=, =\=

� To solve a numeric comparison goal, Prolog

evaluates both sides and compares the

results numerically

� So both sides must be fully instantiated

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 8

Comparisons

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 9

?- 1+2 < 1*2.

false.

?- 1<2.

true.

?- 1+2>=1+3.

false.

?- X is 1-3, Y is 0-2, X =:= Y.

X = -2,
Y = -2.

Equalities In Prolog
� We have used three different but related

equality operators:

– X is Y evaluates Y and unifies the result with X:

3 is 1+2 succeeds, but 1+2 is 3 fails

– X = Y unifies X and Y, with no evaluation: both

3 = 1+2 and 1+2 = 3 fail

– X =:= Y evaluates both and compares: both

3 =:= 1+2 and 1+2 =:= 3 succeed

(and so does 1 =:= 1.0)

� Any evaluated term must be fully instantiated

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 10

Example: mylength

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 11

mylength([],0).
mylength([_|Tail], Len) :-
mylength(Tail, TailLen),
Len is TailLen + 1.

?- mylength([a,b,c],X).

X = 3.

?- mylength(X,3).

X = [_G266, _G269, _G272] .

Counterexample: mylength

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 12

mylength([],0).
mylength([_|Tail], Len) :-
mylength(Tail, TailLen),
Len = TailLen + 1.

?- mylength([1,2,3,4,5],X).

X = 0+1+1+1+1+1.

Example: sum

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 13

sum([],0).
sum([Head|Tail],X) :-
sum(Tail,TailSum),
X is Head + TailSum.

?- sum([1,2,3],X).

X = 6.

?- sum([1,2.5,3],X).

X = 6.5.

Example: gcd

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 14

gcd(X,Y,Z) :-
X =:= Y,
Z is X.

gcd(X,Y,Denom) :-
X < Y,
NewY is Y - X,
gcd(X,NewY,Denom).

gcd(X,Y,Denom) :-
X > Y,
NewX is X - Y,
gcd(NewX,Y,Denom).

Note: not just

gcd(X,X,X)

The gcd Predicate At Work

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 15

?- gcd(5,5,X).

X = 5 .

?- gcd(12,21,X).

X = 3 .

?- gcd(91,105,X).

X = 7 .

?- gcd(91,X,7).

ERROR: Arguments are not sufficiently instantiated

Cutting Wasted Backtracking

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 16

gcd(X,Y,Z) :-
X =:= Y,
Z is X,
!.

gcd(X,Y,Denom) :-
X < Y,
NewY is Y - X,
gcd(X,NewY,Denom),
!.

gcd(X,Y,Denom) :-
X > Y,
NewX is X - Y,
gcd(NewX,Y,Denom).

If this rule succeeds, there’s

no point in trying the others

Same here.

With those cuts, this test is

unnecessary (but we’ll leave

it there).

Example: fact

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 17

fact(X,1) :-
X =:= 1,
!.

fact(X,Fact) :-
X > 1,
NewX is X - 1,
fact(NewX,NF),
Fact is X * NF.

?- fact(5,X).

X = 120.

?- fact(20,X).

X = 2432902008176640000.

?- fact(-2,X).

false.

Outline

� Numeric computation in Prolog

� Problem space search

– Knapsack

– 8-queens

� Farewell to Prolog

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 18

Problem Space Search

� Prolog’s strength is (obviously) not numeric

computation

� The kinds of problems it does best on are

those that involve problem space search

– You give a logical definition of the solution

– Then let Prolog find it

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 19

The Knapsack Problem

� You are packing for a camping trip

� Your pantry contains these items:

� Your knapsack holds 4 kg.

� What choice <= 4 kg. maximizes calories?

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 20

Item Weight in kilograms Calories

bread 4 9200

pasta 2 4600

peanut butter 1 6700

baby food 3 6900

Greedy Methods Do Not Work

� Most calories first: bread only, 9200

� Lightest first: peanut butter + pasta, 11300

� (Best choice: peanut butter + baby food,

13600)

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 21

Item Weight in kilograms Calories

bread 4 9200

pasta 2 4600

peanut butter 1 6700

baby food 3 6900

Search

� No algorithm for this problem is known that

– Always gives the best answer, and

– Takes less than exponential time

� So brute-force search is nothing to be

ashamed of here

� That’s good, since search is something

Prolog does really well

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 22

Representation

� We will represent each food item as a term
food(N,W,C)

� Pantry in our example is
[food(bread,4,9200),
food(pasta,2,4500),
food(peanutButter,1,6700),
food(babyFood,3,6900)]

� Same representation for knapsack contents

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 23

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 24

/*
weight(L,N) takes a list L of food terms, each
of the form food(Name,Weight,Calories). We
unify N with the sum of all the Weights.

*/
weight([],0).
weight([food(_,W,_) | Rest], X) :-
weight(Rest,RestW),
X is W + RestW.

/*
calories(L,N) takes a list L of food terms, each
of the form food(Name,Weight,Calories). We
unify N with the sum of all the Calories.

*/
calories([],0).
calories([food(_,_,C) | Rest], X) :-
calories(Rest,RestC),
X is C + RestC.

� A subsequence of a list is a copy of the list

with any number of elements omitted

� (Knapsacks are subsequences of the pantry)

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 25

/*
subseq(X,Y) succeeds when list X is the same as
list Y, but with zero or more elements omitted.
This can be used with any pattern of instantiations.

*/
subseq([],[]).
subseq([Item | RestX], [Item | RestY]) :-
subseq(RestX,RestY).

subseq(X, [_ | RestY]) :-
subseq(X,RestY).

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 26

?- subseq([1,3],[1,2,3,4]).

true.

?- subseq(X,[1,2,3]).

X = [1, 2, 3] ;
X = [1, 2] ;
X = [1, 3] ;
X = [1] ;
X = [2, 3] ;

X = [2] ;
X = [3] ;
X = [] ;
false.

Note that subseq can do more

than just test whether one list is a

subsequence of another; it can

generate subsequences, which is

how we will use it for the

knapsack problem.

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 27

/*
knapsackDecision(Pantry,Capacity,Goal,Knapsack) takes
a list Pantry of food terms, a positive number
Capacity, and a positive number Goal. We unify
Knapsack with a subsequence of Pantry representing
a knapsack with total calories >= goal, subject to
the constraint that the total weight is =< Capacity.

*/
knapsackDecision(Pantry,Capacity,Goal,Knapsack) :-
subseq(Knapsack,Pantry),
weight(Knapsack,Weight),
Weight =< Capacity,
calories(Knapsack,Calories),
Calories >= Goal.

� This decides whether there is a solution that

meets the given calorie goal

� Not exactly the answer we want…

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 28

?- knapsackDecision(

| [food(bread,4,9200),

| food(pasta,2,4500),

| food(peanutButter,1,6700),

| food(babyFood,3,6900)],

| 4,

| 10000,

| X).

X = [food(pasta, 2, 4500),
food(peanutButter, 1, 6700)].

Decision And Optimization

� We solved the knapsack decision problem

� What we wanted to solve was the knapsack

optimization problem

� To do that, we will use another predefined

predicate: findall

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 29

The findall Predicate

� findall(X,Goal,L)
– Finds all the ways of proving Goal

– For each, applies to X the same substitution that

made a provable instance of Goal

– Unifies L with the list of all those X’s

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 30

Counting The Solutions

� This shows there were four ways of proving
subseq(_,[1,2])

� Collected a list of 1’s, one for each proof

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 31

?- findall(1,subseq(_,[1,2]),L).

L = [1, 1, 1, 1].

Collecting The Instances

� The first and second parameters to

findall are the same

� This collects all four provable instances of

the goal subseq(X,[1,2])
Chapter Twenty-Two Modern Programming Languages, 2nd ed. 32

?- findall(subseq(X,[1,2]),subseq(X,[1,2]),L).

L = [subseq([1, 2], [1, 2]), subseq([1], [1, 2]),
subseq([2], [1, 2]), subseq([], [1, 2])].

Collecting Particular

Substitutions

� A common use of findall: the first
parameter is a variable from the second

� This collects all four X’s that make the goal
subseq(X,[1,2]) provable

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 33

?- findall(X,subseq(X,[1,2]),L).

L = [[1, 2], [1], [2], []].

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 34

/*
legalKnapsack(Pantry,Capacity,Knapsack) takes a list
Pantry of food terms and a positive number Capacity.
We unify Knapsack with a subsequence of Pantry whose
total weight is =< Capacity.

*/
legalKnapsack(Pantry,Capacity,Knapsack):-
subseq(Knapsack,Pantry),
weight(Knapsack,W),
W =< Capacity.

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 35

/*
maxCalories(List,Result) takes a List of lists of
food terms. We unify Result with an element from the
list that maximizes the total calories. We use a
helper predicate maxC that takes four paramters: the
remaining list of lists of food terms, the best list
of food terms seen so far, its total calories, and
the final result.

*/
maxC([],Sofar,_,Sofar).
maxC([First | Rest],_,MC,Result) :-
calories(First,FirstC),
MC =< FirstC,
maxC(Rest,First,FirstC,Result).

maxC([First | Rest],Sofar,MC,Result) :-
calories(First,FirstC),
MC > FirstC,
maxC(Rest,Sofar,MC,Result).

maxCalories([First | Rest],Result) :-
calories(First,FirstC),
maxC(Rest,First,FirstC,Result).

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 36

/*
knapsackOptimization(Pantry,Capacity,Knapsack) takes
a list Pantry of food items and a positive integer
Capacity. We unify Knapsack with a subsequence of
Pantry representing a knapsack of maximum total
calories, subject to the constraint that the total
weight is =< Capacity.

*/
knapsackOptimization(Pantry,Capacity,Knapsack) :-
findall(K,legalKnapsack(Pantry,Capacity,K),L),
maxCalories(L,Knapsack).

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 37

?- knapsackOptimization(

| [food(bread,4,9200),

| food(pasta,2,4500),

| food(peanutButter,1,6700),

| food(babyFood,3,6900)],

| 4,

| Knapsack).

Knapsack = [food(peanutButter, 1, 6700),
food(babyFood, 3, 6900)] .

Outline

� Numeric computation in Prolog

� Problem space search

– Knapsack

– 8-queens

� Farewell to Prolog

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 38

The 8-Queens Problem

� Chess background:

– Played on an 8-by-8 grid

– Queen can move any number of spaces
vertically, horizontally or diagonally

– Two queens are in check if they are in the same
row, column or diagonal, so that one could
move to the other’s square

� The problem: place 8 queens on an empty
chess board so that no queen is in check

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 39

Representation

� We could represent a queen in column 2,
row 5 with the term queen(2,5)

� But it will be more readable if we use
something more compact

� Since there will be no other pieces—no
pawn(X,Y) or king(X,Y)—we will just
use a term of the form X/Y

� (We won’t evaluate it as a quotient)

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 40

Example

� A chessboard configuration is just a list of
queens

� This one is [2/5,3/7,6/1]

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 41

8

7

6

5

4

3

2

1

2 1 4 3 6 5 8 7

Q

Q

Q

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 42

/*
nocheck(X/Y,L) takes a queen X/Y and a list
of queens. We succeed if and only if the X/Y
queen holds none of the others in check.

*/
nocheck(_, []).
nocheck(X/Y, [X1/Y1 | Rest]) :-
X =\= X1,
Y =\= Y1,
abs(Y1-Y) =\= abs(X1-X),
nocheck(X/Y, Rest).

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 43

/*
legal(L) succeeds if L is a legal placement of
queens: all coordinates in range and no queen
in check.

*/
legal([]).
legal([X/Y | Rest]) :-
legal(Rest),
member(X,[1,2,3,4,5,6,7,8]),
member(Y,[1,2,3,4,5,6,7,8]),
nocheck(X/Y, Rest).

Adequate

� This is already enough to solve the problem:
the query legal(X) will find all legal
configurations:

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 44

?- legal(X).

X = [] ;
X = [1/1] ;
X = [1/2] ;
X = [1/3] ;
etc.

8-Queens Solution

� Of course that will take too long: it finds all

64 legal 1-queens solutions, then starts on

the 2-queens solutions, and so on

� To make it concentrate right away on

8-queens, we can give a different query:

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 45

?- X = [_,_,_,_,_,_,_,_], legal(X).

X = [8/4, 7/2, 6/7, 5/3, 4/6, 3/8, 2/5, 1/1] .

Example

� Our 8-queens solution

� [8/4, 7/2, 6/7, 5/3,
4/6, 3/8, 2/5, 1/1]

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 46

8

7

6

5

4

3

2

1

2 1 4 3 6 5 8 7

Q

 Q

Q

Q

 Q

 Q

 Q

Q

Room For Improvement

� Slow

� Finds trivial permutations after the first:

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 47

?- X = [_,_,_,_,_,_,_,_], legal(X).

X = [8/4, 7/2, 6/7, 5/3, 4/6, 3/8, 2/5, 1/1] ;
X = [7/2, 8/4, 6/7, 5/3, 4/6, 3/8, 2/5, 1/1] ;
X = [8/4, 6/7, 7/2, 5/3, 4/6, 3/8, 2/5, 1/1] ;
X = [6/7, 8/4, 7/2, 5/3, 4/6, 3/8, 2/5, 1/1] ;
etc.

An Improvement

� Clearly every solution has 1 queen in each
column

� So every solution can be written in a fixed
order, like this:

X=[1/_,2/_,3/_,4/_,5/_,6/_,7/_,8/_]

� Starting with a goal term of that form will
restrict the search (speeding it up) and avoid
those trivial permutations

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 48

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 49

/*
eightqueens(X) succeeds if X is a legal
placement of eight queens, listed in order
of their X coordinates.

*/
eightqueens(X) :-
X = [1/_,2/_,3/_,4/_,5/_,6/_,7/_,8/_],
legal(X).

� Since all X-coordinates are already known
to be in range and distinct, these can be
optimized a little

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 50

nocheck(_, []).
nocheck(X/Y, [X1/Y1 | Rest]) :-
% X =\= X1, assume the X's are distinct
Y =\= Y1,
abs(Y1-Y) =\= abs(X1-X),
nocheck(X/Y, Rest).

legal([]).
legal([X/Y | Rest]) :-
legal(Rest),
% member(X,[1,2,3,4,5,6,7,8]), assume X in range
member(Y,[1,2,3,4,5,6,7,8]),
nocheck(X/Y, Rest).

Improved 8-Queens Solution

� Now much faster

� Does not bother with permutations

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 51

?- eightqueens(X).

X = [1/4, 2/2, 3/7, 4/3, 5/6, 6/8, 7/5, 8/1] ;
X = [1/5, 2/2, 3/4, 4/7, 5/3, 6/8, 7/6, 8/1] ;
etc.

An Experiment

� Fails: “arguments not sufficiently
instantiated”

� The member condition does not just test
in-range coordinates; it generates them

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 52

legal([]).
legal([X/Y | Rest]) :-
legal(Rest),
% member(X,[1,2,3,4,5,6,7,8]), assume X in range
1=<Y, Y=<8, % was member(Y,[1,2,3,4,5,6,7,8]),
nocheck(X/Y, Rest).

Another Experiment

� Fails: “arguments not sufficiently
instantiated”

� The legal(Rest) condition must come
first, because it generates the partial
solution tested by nocheck

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 53

legal([]).
legal([X/Y | Rest]) :-
% member(X,[1,2,3,4,5,6,7,8]), assume X in range
member(Y,[1,2,3,4,5,6,7,8]),
nocheck(X/Y, Rest),
legal(Rest). % formerly the first condition

Outline

� Numeric computation in Prolog

� Problem space search

– Knapsack

– 8-queens

� Farewell to Prolog

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 54

Parts We Skipped
� Some control predicate shortcuts

– -> for if-then and if-then-else

– ; for a disjunction of goals

� Exception handling

– System-generated or user-generated exceptions

– throw and catch predicates

� The API

– A small ISO API; most systems provide more

– Many public Prolog libraries: network and file
I/O, graphical user interfaces, etc.

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 55

A Small Language

� We did not have to skip as much of Prolog

as we did of ML and Java

� Prolog is a small language

� Yet it is powerful and not easy to master

� The most important things we skipped are

the techniques Prolog programmers use to

get the most out of it

Chapter Twenty-Two Modern Programming Languages, 2nd ed. 56

