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Which Is Faster?

� Every experienced programmer has a cost 

model of the language: a mental model of 

the relative costs of various operations

� Not usually a part of a language 

specification, but very important in practice
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Y=[1|X]

append(X,[1],Y)



Outline

� A cost model for lists

� A cost model for function calls

� A cost model for Prolog search

� A cost model for arrays

� Spurious cost models
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The Cons-Cell List

� Used by ML, Prolog, Lisp, and many other 
languages

� We also implemented this in Java
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?- A = [],
|    B = .(1,[]),
|    C = .(1,.(2,[])).
A = [],
B = [1],
C = [1, 2].

A: []

B: []

1

C: []

1 2



Shared List Structure
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?- D = [2,3],
| E = [1|D],
| E = [F|G].
D = [2, 3],
E = [1, 2, 3],
F = 1,
G = [2, 3].

F:

E:

1

D: []

2 3

G:



How Do We Know?

� How do we know Prolog shares list 

structure—how do we know E=[1|D]
does not make a copy of term D?

� It observably takes a constant amount of 

time and space

� This is not part of the formal specification 

of Prolog, but is part of the cost model
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Computing Length

� length(X,Y) can take no shortcut—it 

must count the length, like this in ML:

� Takes time proportional to the length of the 

list
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fun length nil = 0
|   length (head::tail) = 1 + length tail;



Appending Lists
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?- H = [1,2],
|    I = [3,4],
|    append(H,I,J).
H = [1, 2],
I = [3, 4],
J = [1, 2, 3, 4].

H: []

1 2

I: []

3 4

J:

1 2

� append(H,I,J) can also be expensive: 
it must make a copy of H



Appending

� append must copy the prefix:

� Takes time proportional to the length of the 

first list
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append([],X,X).
append([Head|Tail],X,[Head|Suffix]) :-
append(Tail,X,Suffix).



Unifying Lists
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� Unifying lists can also be expensive, since 

they may or may not share structure:

?- K = [1,2],
| M = K,
| N = [1,2].
K = [1, 2],
M = [1, 2],
N = [1, 2].

K: []

1 2

M:

N:

1 2

[]



Unifying Lists

� To test whether lists unify, the system must 

compare them element by element:

� It might be able to take a shortcut if it finds 

shared structure, but in the worst case it 

must compare the entire structure of both 

lists
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xequal([],[]).
xequal([Head|Tail1],[Head|Tail2]) :-
xequal(Tail1,Tail2).



Cons-Cell Cost Model Summary

� Consing takes constant time

� Extracting head or tail takes constant time

� Computing the length of a list takes time 
proportional to the length

� Computing the result of appending two lists 
takes time proportional to the length of the 
first list

� Comparing two lists, in the worst case, 
takes time proportional to their size
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Application
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reverse([],[]).
reverse([Head|Tail],Rev) :-
reverse(Tail,TailRev),
append(TailRev,[Head],Rev).

reverse(X,Y) :- rev(X,[],Y).
rev([],Sofar,Sofar).
rev([Head|Tail],Sofar,Rev) :-
rev(Tail,[Head|Sofar],Rev).

The cost model guides 

programmers away from 

solutions like this, which 

grow lists from the rear

This is much faster: linear 

time instead of quadratic



Exposure

� Some languages expose the shared-structure 
cons-cell implementation:

– Lisp programs can test for equality (equal) or 
for shared structure (eq, constant time)

� Other languages (like Prolog and ML) try to 
hide it, and have no such test

� But the implementation is still visible in the 
sense that programmers know and use the 
cost model
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Outline

� A cost model for lists

� A cost model for function calls

� A cost model for Prolog search

� A cost model for arrays

� Spurious cost models
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Reverse in ML

� Here is an ML implementation that works 

like the previous Prolog reverse
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fun reverse x =
let
fun rev(nil,sofar) = sofar
|   rev(head::tail,sofar) =

rev(tail,head::sofar);
in
rev(x,nil)

end;



Example
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fun rev(nil,sofar) = sofar
|   rev(head::tail,sofar) =

rev(tail,head::sofar);

We are evaluating 

rev([1,2],nil).  

This shows the contents of 

memory just before the 

recursive call that creates 

a second activation.

previous  

activation record 

return address 

head: 1 

result: ? 

current  

activation record 

tail: [2] 

sofar: nil 
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fun rev(nil,sofar) = sofar
|   rev(head::tail,sofar) =

rev(tail,head::sofar);

This shows the contents of 

memory just before the 

third activation.

previous  

activation record 

return address 

head: 2 

result: ? 

current  

activation record 

tail: nil 

previous  

activation record 

return address 

head: 1 

result: ? 

tail: [2] 

sofar: [1] sofar: nil 
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fun rev(nil,sofar) = sofar
|   rev(head::tail,sofar) =

rev(tail,head::sofar);

This shows the contents of 

memory just before the 

third activation returns.

previous  

activation record 

return address 

head: 2 

result: ? 

current  

activation record 

tail: nil 

previous  

activation record 

return address 

head: 1 

result: ? 

tail: [2] 

sofar: [1] sofar: nil 

previous  

activation record 

return address 

result: [2,1] 

sofar: [2,1] 
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fun rev(nil,sofar) = sofar
|   rev(head::tail,sofar) =

rev(tail,head::sofar);

This shows the contents of 

memory just before the 

second activation returns.

All it does is return the 

same value that was just 

returned to it.

previous  

activation record 

return address 

head: 2 

result: [2,1] 

current  

activation record 

tail: nil 

previous  

activation record 

return address 

head: 1 

result: ? 

tail: [2] 

sofar: [1] sofar: nil 

previous  

activation record 

return address 

result: [2,1] 

sofar: [2,1] 
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fun rev(nil,sofar) = sofar
|   rev(head::tail,sofar) =

rev(tail,head::sofar);

This shows the contents of 

memory just before the 

first activation returns.

All it does is return the 

same value that was just 

returned to it.

previous  

activation record 

return address 

head: 2 

result: [2,1] 

current  

activation record 

tail: nil 

previous  

activation record 

return address 

head: 1 

result: [2,1] 

tail: [2] 

sofar: [1] sofar: nil 

previous  

activation record 

return address 

result: [2,1] 

sofar: [2,1] 



Tail Calls

� A function call is a tail call if the calling 

function does no further computation, but 

merely returns the resulting value (if any) to 

its own caller

� All the calls in the previous example were 

tail calls
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Tail Recursion

� A recursive function is tail recursive if all 

its recursive calls are tail calls

� Our rev function is tail recursive
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fun reverse x =
let
fun rev(nil,sofar) = sofar
|   rev(head::tail,sofar) =

rev(tail,head::sofar);
in
rev(x,nil)

end;



Tail-Call Optimization

� When a function makes a tail call, it no 

longer needs its activation record

� Most language systems take advantage of 

this to optimize tail calls, by using the same 

activation record for the called function

– No need to push/pop another frame

– Called function returns directly to original 

caller
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Example
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fun rev(nil,sofar) = sofar
|   rev(head::tail,sofar) =

rev(tail,head::sofar);

We are evaluating 

rev([1,2],nil).  

This shows the contents of 

memory just before the 

recursive call that creates 

a second activation.

previous  

activation record 

return address 

head: 1 

result: ? 

current  

activation record 

tail: [2] 

sofar: nil 
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fun rev(nil,sofar) = sofar
|   rev(head::tail,sofar) =

rev(tail,head::sofar);

Just before the third 

activation.

Optimizing the tail call, 

we reused the same 

activation record.

The variables are 

overwritten with their new 

values.

previous  

activation record 

return address 

head: 2 

result: ? 

current  

activation record 

tail: nil 

sofar: [1] 
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fun rev(nil,sofar) = sofar
|   rev(head::tail,sofar) =

rev(tail,head::sofar);

Just before the third 

activation returns.

Optimizing the tail call, 

we reused the same 

activation record again.  

We did not need all of it.

The variables are 

overwritten with their new 

values.

Ready to return the final 

result directly to rev’s 

original caller 

(reverse).

previous  

activation record 

return address 

(unused) 

result: [2,1] 

current  

activation record 

sofar: [2,1] 



Tail-Call Cost Model

� Under this model, tail calls are significantly 
faster than non-tail calls

� And they take up less space

� The space consideration may be more 
important here:

– tail-recursive functions can take constant space

– non-tail-recursive functions take space at least 
linear in the depth of the recursion
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Application
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fun length nil = 0
|   length (head::tail) = 

1 + length tail;

fun length thelist =
let
fun len (nil,sofar) = sofar
|   len (head::tail,sofar) = 

len (tail,sofar+1);
in
len (thelist,0)

end;

The cost model guides 

programmers away from 

non-tail-recursive 

solutions like this

Although longer, this 

solution runs faster and 

takes less space

An accumulating parameter.

Often useful when converting 

to tail-recursive form



Applicability

� Implemented in virtually all functional 

language systems; explicitly guaranteed by 

some functional language specifications

� Also implemented by good compilers for 

most other modern languages: C, C++, etc.

� One exception: not currently implemented 

in Java language systems
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Prolog Tail Calls

� A similar optimization is done by most 
compiled Prolog systems

� But it can be a tricky to identify tail calls:

� Call of r above is not (necessarily) a tail 
call because of possible backtracking

� For the last condition of a rule, when there 
is no possibility of backtracking, Prolog 
systems can implement a kind of tail-call 
optimization
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p :- q(X), r(X).



Outline

� A cost model for lists

� A cost model for function calls

� A cost model for Prolog search

� A cost model for arrays

� Spurious cost models
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Prolog Search

� We know all the details already:

– A Prolog system works on goal terms from left 

to right

– It tries rules from the database in order, trying 

to unify the head of each rule with the current 

goal term

– It backtracks on failure—there may be more 

than one rule whose head unifies with a given 

goal term, and it tries as many as necessary
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Application
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grandfather(X,Y) :-
parent(X,Z), 
parent(Z,Y),
male(X).

grandfather(X,Y) :-
parent(X,Z), 
male(X),
parent(Z,Y).

The cost model guides 

programmers away from 

solutions like this.  Why do 

all that work if  X is not 

male?

Although logically 

identical, this solution 

may be much faster 

since it restricts early.



General Cost Model

� Clause order in the database, and condition 

order in each rule, can affect cost

� Can’t reduce to simple guidelines, since the 

best order often depends on the query as 

well as the database
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Outline

� A cost model for lists

� A cost model for function calls

� A cost model for Prolog search

� A cost model for arrays

� Spurious cost models
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Multidimensional Arrays

� Many languages support them

� In C:

int a[1000][1000];

� This defines a million integer variables

� One a[i][j] for each pair of i and j
with 0 ≤ i < 1000 and 0 ≤ j < 1000
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Which Is Faster?
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int addup1
(int a[1000][1000]) {

int total = 0;
int i = 0;
while (i < 1000) {
int j = 0;
while (j < 1000) {
total += a[i][j];
j++;

}
i++;

}
return total;

}

int addup2
(int a[1000][1000]) {

int total = 0;
int j = 0;
while (j < 1000) {
int i = 0;
while (i < 1000) {
total += a[i][j];
i++;

}
j++;

}
return total;

}

Varies j in the inner loop:

a[0][0] through a[0][999], then 

a[1][0] through a[1][999], …

Varies i in the inner loop:

a[0][0] through a[999][0], then 

a[0][1] through a[999][1], …



Sequential Access

� Memory hardware is generally optimized for 
sequential access

� If the program just accessed word i, the hardware 
anticipates in various ways that word i+1 will soon 
be needed too

� So accessing array elements sequentially, in the 
same order in which they are stored in memory, is 
faster than accessing them non-sequentially

� In what order are elements stored in memory?
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1D Arrays In Memory

� For one-dimensional arrays, a natural layout

� An array of n elements can be stored in a block of 
n × size words 

– size is the number of words per element

� The memory address of A[i] can be computed as 
base + i × size:

– base is the start of A’s block of memory

– (Assumes indexes start at 0)

� Sequential access is natural—hard to avoid
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2D Arrays?

� Often visualized as a grid

� A[i][j] is row i, column j:

� Must be mapped to linear memory…
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0,0 0,1 0,2 0,3 

1,0 1,1 1,2 1,3 

2,0 2,1 2,2 2,3 

row 0 

row 1 

co
lu

m
n 0

 

co
lu

m
n 1

 

co
lu

m
n 2

 

co
lu

m
n 3

 
row 2 

A 3-by-4 array: 3 rows 

of 4 columns



Row-Major Order

� One whole row at a time

� An m-by-n array takes m × n × size words

� Address of A[i][j] is 

base + (i × n × size) + (j × size)
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0,0 0,1 0,2 0,3 1,0 1,1 1,2 1,3 2,0 2,1 2,2 2,3 

row 0 row 1 row 2 



Column-Major Order

� One whole column at a time

� An m-by-n array takes m × n × size words

� Address of A[i][j] is 

base + (i × size) + (j × m × size)
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0,0 1,0 2,0 0,1 1,1 2,1 0,2 1,2 2,2 0,3 1,3 2,3 

column 0 column 1 column 2 column 3 



So Which Is Faster?
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int addup1
(int a[1000][1000]) {

int total = 0;
int i = 0;
while (i < 1000) {
int j = 0;
while (j < 1000) {
total += a[i][j];
j++;

}
i++;

}
return total;

}

int addup2
(int a[1000][1000]) {

int total = 0;
int j = 0;
while (j < 1000) {
int i = 0;
while (i < 1000) {
total += a[i][j];
i++;

}
j++;

}
return total;

}

C uses row-major order, so this one is 

faster: it visits the elements in the same 

order in which they are allocated in 

memory.



Other Layouts
� Another common 

strategy is to treat a 2D 
array as an array of 
pointers to 1D arrays

� Rows can be different 
sizes, and unused ones 
can be left unallocated

� Sequential access of 
whole rows is efficient, 
like row-major order

Chapter Twenty-One Modern Programming Languages, 2nd ed. 45

0,0 0,1 0,2 0,3 

1,0 1,1 1,2 1,3 

2,0 2,1 2,2 2,3 

row 0 

row 1 

row 2 



Higher Dimensions

� 2D layouts generalize for higher dimensions

� For example, generalization of row-major 

(odometer order) matches this access order:

� Rightmost subscript varies fastest
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for each i0

for each i1

...
for each in-2

for each in-1

access A[i0][i1]…[in-2][in-1]



Is Array Layout Visible?

� In C, it is visible through pointer arithmetic 

– If p is the address of a[i][j], then p+1 is the 
address of a[i][j+1]: row-major order

� Fortran also makes it visible

– Overlaid allocations reveal column-major order

� Ada usually uses row-major, but hides it

– Ada programs would still work if layout changed

� But for all these languages, it is visible as a part of 
the cost model
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Outline

� A cost model for lists

� A cost model for function calls

� A cost model for Prolog search

� A cost model for arrays

� Spurious cost models
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Question
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int max(int i, int j) {
return i>j?i:j;

}

int main() {
int i,j;
double sum = 0.0;
for (i=0; i<10000; i++) {
for (j=0; j<10000; j++) {
sum += max(i,j);

}
}
printf("%d\n", sum);

}

If we replace this with a 

direct computation,

sum += (i>j?i:j)

how much faster will the 

program be?



Inlining

� Replacing a function call with the body of 

the called function is called inlining

� Saves the overhead of making a function 

call: push, call, return, pop

� Usually minor, but for something as simple 

as max the overhead might dominate the 

cost of the executing the function body
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Cost Model

� Function call overhead is comparable to the 

cost of a small function body

� This guides programmers toward solutions 

that use inlined code (or macros, in C) 

instead of function calls, especially for 

small, frequently-called functions
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Wrong!

� Unfortunately, this model is often wrong

� Any respectable C compiler can perform 

inlining automatically

� (Gnu C does this with –O2 for small 

functions)

� Our example runs at exactly the same speed 

whether we inline manually, or let the 

compiler do it
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Applicability

� Not just a C phenomenon—many language 
systems for different languages do inlining

� (It is especially important, and often 
implemented, for object-oriented languages)

� Usually it is a mistake to clutter up code 
with manually inlined copies of function 
bodies

� It just makes the program harder to read and 
maintain, but no faster after automatic 
optimization
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Cost Models Change

� For the first 10 years or so, C compilers that 

could do inlining were not generally 

available

� It made sense to manually inline in 

performance-critical code

� Another example is the old register
declaration from C
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Conclusion

� Some cost models are language-system-
specific: does this C compiler do inlining?

� Others more general: tail-call optimization 
is a safe bet for all functional language 
systems and most other language systems

� All are an important part of the working 
programmer’s expertise, though rarely part 
of the language specification

� No substitute for good algorithms!
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