
Cost Models

Chapter Twenty-One Modern Programming Languages, 2nd ed. 1

Which Is Faster?

� Every experienced programmer has a cost

model of the language: a mental model of

the relative costs of various operations

� Not usually a part of a language

specification, but very important in practice

Chapter Twenty-One Modern Programming Languages, 2nd ed. 2

Y=[1|X]

append(X,[1],Y)

Outline

� A cost model for lists

� A cost model for function calls

� A cost model for Prolog search

� A cost model for arrays

� Spurious cost models

Chapter Twenty-One Modern Programming Languages, 2nd ed. 3

The Cons-Cell List

� Used by ML, Prolog, Lisp, and many other
languages

� We also implemented this in Java

Chapter Twenty-One Modern Programming Languages, 2nd ed. 4

?- A = [],
| B = .(1,[]),
| C = .(1,.(2,[])).
A = [],
B = [1],
C = [1, 2].

A: []

B: []

1

C: []

1 2

Shared List Structure

Chapter Twenty-One Modern Programming Languages, 2nd ed. 5

?- D = [2,3],
| E = [1|D],
| E = [F|G].
D = [2, 3],
E = [1, 2, 3],
F = 1,
G = [2, 3].

F:

E:

1

D: []

2 3

G:

How Do We Know?

� How do we know Prolog shares list

structure—how do we know E=[1|D]
does not make a copy of term D?

� It observably takes a constant amount of

time and space

� This is not part of the formal specification

of Prolog, but is part of the cost model

Chapter Twenty-One Modern Programming Languages, 2nd ed. 6

Computing Length

� length(X,Y) can take no shortcut—it

must count the length, like this in ML:

� Takes time proportional to the length of the

list

Chapter Twenty-One Modern Programming Languages, 2nd ed. 7

fun length nil = 0
| length (head::tail) = 1 + length tail;

Appending Lists

Chapter Twenty-One Modern Programming Languages, 2nd ed. 8

?- H = [1,2],
| I = [3,4],
| append(H,I,J).
H = [1, 2],
I = [3, 4],
J = [1, 2, 3, 4].

H: []

1 2

I: []

3 4

J:

1 2

� append(H,I,J) can also be expensive:
it must make a copy of H

Appending

� append must copy the prefix:

� Takes time proportional to the length of the

first list

Chapter Twenty-One Modern Programming Languages, 2nd ed. 9

append([],X,X).
append([Head|Tail],X,[Head|Suffix]) :-
append(Tail,X,Suffix).

Unifying Lists

Chapter Twenty-One Modern Programming Languages, 2nd ed. 10

� Unifying lists can also be expensive, since

they may or may not share structure:

?- K = [1,2],
| M = K,
| N = [1,2].
K = [1, 2],
M = [1, 2],
N = [1, 2].

K: []

1 2

M:

N:

1 2

[]

Unifying Lists

� To test whether lists unify, the system must

compare them element by element:

� It might be able to take a shortcut if it finds

shared structure, but in the worst case it

must compare the entire structure of both

lists

Chapter Twenty-One Modern Programming Languages, 2nd ed. 11

xequal([],[]).
xequal([Head|Tail1],[Head|Tail2]) :-
xequal(Tail1,Tail2).

Cons-Cell Cost Model Summary

� Consing takes constant time

� Extracting head or tail takes constant time

� Computing the length of a list takes time
proportional to the length

� Computing the result of appending two lists
takes time proportional to the length of the
first list

� Comparing two lists, in the worst case,
takes time proportional to their size

Chapter Twenty-One Modern Programming Languages, 2nd ed. 12

Application

Chapter Twenty-One Modern Programming Languages, 2nd ed. 13

reverse([],[]).
reverse([Head|Tail],Rev) :-
reverse(Tail,TailRev),
append(TailRev,[Head],Rev).

reverse(X,Y) :- rev(X,[],Y).
rev([],Sofar,Sofar).
rev([Head|Tail],Sofar,Rev) :-
rev(Tail,[Head|Sofar],Rev).

The cost model guides

programmers away from

solutions like this, which

grow lists from the rear

This is much faster: linear

time instead of quadratic

Exposure

� Some languages expose the shared-structure
cons-cell implementation:

– Lisp programs can test for equality (equal) or
for shared structure (eq, constant time)

� Other languages (like Prolog and ML) try to
hide it, and have no such test

� But the implementation is still visible in the
sense that programmers know and use the
cost model

Chapter Twenty-One Modern Programming Languages, 2nd ed. 14

Outline

� A cost model for lists

� A cost model for function calls

� A cost model for Prolog search

� A cost model for arrays

� Spurious cost models

Chapter Twenty-One Modern Programming Languages, 2nd ed. 15

Reverse in ML

� Here is an ML implementation that works

like the previous Prolog reverse

Chapter Twenty-One Modern Programming Languages, 2nd ed. 16

fun reverse x =
let
fun rev(nil,sofar) = sofar
| rev(head::tail,sofar) =

rev(tail,head::sofar);
in
rev(x,nil)

end;

Example

Chapter Twenty-One Modern Programming Languages, 2nd ed. 17

fun rev(nil,sofar) = sofar
| rev(head::tail,sofar) =

rev(tail,head::sofar);

We are evaluating

rev([1,2],nil).

This shows the contents of

memory just before the

recursive call that creates

a second activation.

previous

activation record

return address

head: 1

result: ?

current

activation record

tail: [2]

sofar: nil

Chapter Twenty-One Modern Programming Languages, 2nd ed. 18

fun rev(nil,sofar) = sofar
| rev(head::tail,sofar) =

rev(tail,head::sofar);

This shows the contents of

memory just before the

third activation.

previous

activation record

return address

head: 2

result: ?

current

activation record

tail: nil

previous

activation record

return address

head: 1

result: ?

tail: [2]

sofar: [1] sofar: nil

Chapter Twenty-One Modern Programming Languages, 2nd ed. 19

fun rev(nil,sofar) = sofar
| rev(head::tail,sofar) =

rev(tail,head::sofar);

This shows the contents of

memory just before the

third activation returns.

previous

activation record

return address

head: 2

result: ?

current

activation record

tail: nil

previous

activation record

return address

head: 1

result: ?

tail: [2]

sofar: [1] sofar: nil

previous

activation record

return address

result: [2,1]

sofar: [2,1]

Chapter Twenty-One Modern Programming Languages, 2nd ed. 20

fun rev(nil,sofar) = sofar
| rev(head::tail,sofar) =

rev(tail,head::sofar);

This shows the contents of

memory just before the

second activation returns.

All it does is return the

same value that was just

returned to it.

previous

activation record

return address

head: 2

result: [2,1]

current

activation record

tail: nil

previous

activation record

return address

head: 1

result: ?

tail: [2]

sofar: [1] sofar: nil

previous

activation record

return address

result: [2,1]

sofar: [2,1]

Chapter Twenty-One Modern Programming Languages, 2nd ed. 21

fun rev(nil,sofar) = sofar
| rev(head::tail,sofar) =

rev(tail,head::sofar);

This shows the contents of

memory just before the

first activation returns.

All it does is return the

same value that was just

returned to it.

previous

activation record

return address

head: 2

result: [2,1]

current

activation record

tail: nil

previous

activation record

return address

head: 1

result: [2,1]

tail: [2]

sofar: [1] sofar: nil

previous

activation record

return address

result: [2,1]

sofar: [2,1]

Tail Calls

� A function call is a tail call if the calling

function does no further computation, but

merely returns the resulting value (if any) to

its own caller

� All the calls in the previous example were

tail calls

Chapter Twenty-One Modern Programming Languages, 2nd ed. 22

Tail Recursion

� A recursive function is tail recursive if all

its recursive calls are tail calls

� Our rev function is tail recursive

Chapter Twenty-One Modern Programming Languages, 2nd ed. 23

fun reverse x =
let
fun rev(nil,sofar) = sofar
| rev(head::tail,sofar) =

rev(tail,head::sofar);
in
rev(x,nil)

end;

Tail-Call Optimization

� When a function makes a tail call, it no

longer needs its activation record

� Most language systems take advantage of

this to optimize tail calls, by using the same

activation record for the called function

– No need to push/pop another frame

– Called function returns directly to original

caller

Chapter Twenty-One Modern Programming Languages, 2nd ed. 24

Example

Chapter Twenty-One Modern Programming Languages, 2nd ed. 25

fun rev(nil,sofar) = sofar
| rev(head::tail,sofar) =

rev(tail,head::sofar);

We are evaluating

rev([1,2],nil).

This shows the contents of

memory just before the

recursive call that creates

a second activation.

previous

activation record

return address

head: 1

result: ?

current

activation record

tail: [2]

sofar: nil

Chapter Twenty-One Modern Programming Languages, 2nd ed. 26

fun rev(nil,sofar) = sofar
| rev(head::tail,sofar) =

rev(tail,head::sofar);

Just before the third

activation.

Optimizing the tail call,

we reused the same

activation record.

The variables are

overwritten with their new

values.

previous

activation record

return address

head: 2

result: ?

current

activation record

tail: nil

sofar: [1]

Chapter Twenty-One Modern Programming Languages, 2nd ed. 27

fun rev(nil,sofar) = sofar
| rev(head::tail,sofar) =

rev(tail,head::sofar);

Just before the third

activation returns.

Optimizing the tail call,

we reused the same

activation record again.

We did not need all of it.

The variables are

overwritten with their new

values.

Ready to return the final

result directly to rev’s

original caller

(reverse).

previous

activation record

return address

(unused)

result: [2,1]

current

activation record

sofar: [2,1]

Tail-Call Cost Model

� Under this model, tail calls are significantly
faster than non-tail calls

� And they take up less space

� The space consideration may be more
important here:

– tail-recursive functions can take constant space

– non-tail-recursive functions take space at least
linear in the depth of the recursion

Chapter Twenty-One Modern Programming Languages, 2nd ed. 28

Application

Chapter Twenty-One Modern Programming Languages, 2nd ed. 29

fun length nil = 0
| length (head::tail) =

1 + length tail;

fun length thelist =
let
fun len (nil,sofar) = sofar
| len (head::tail,sofar) =

len (tail,sofar+1);
in
len (thelist,0)

end;

The cost model guides

programmers away from

non-tail-recursive

solutions like this

Although longer, this

solution runs faster and

takes less space

An accumulating parameter.

Often useful when converting

to tail-recursive form

Applicability

� Implemented in virtually all functional

language systems; explicitly guaranteed by

some functional language specifications

� Also implemented by good compilers for

most other modern languages: C, C++, etc.

� One exception: not currently implemented

in Java language systems

Chapter Twenty-One Modern Programming Languages, 2nd ed. 30

Prolog Tail Calls

� A similar optimization is done by most
compiled Prolog systems

� But it can be a tricky to identify tail calls:

� Call of r above is not (necessarily) a tail
call because of possible backtracking

� For the last condition of a rule, when there
is no possibility of backtracking, Prolog
systems can implement a kind of tail-call
optimization

Chapter Twenty-One Modern Programming Languages, 2nd ed. 31

p :- q(X), r(X).

Outline

� A cost model for lists

� A cost model for function calls

� A cost model for Prolog search

� A cost model for arrays

� Spurious cost models

Chapter Twenty-One Modern Programming Languages, 2nd ed. 32

Prolog Search

� We know all the details already:

– A Prolog system works on goal terms from left

to right

– It tries rules from the database in order, trying

to unify the head of each rule with the current

goal term

– It backtracks on failure—there may be more

than one rule whose head unifies with a given

goal term, and it tries as many as necessary

Chapter Twenty-One Modern Programming Languages, 2nd ed. 33

Application

Chapter Twenty-One Modern Programming Languages, 2nd ed. 34

grandfather(X,Y) :-
parent(X,Z),
parent(Z,Y),
male(X).

grandfather(X,Y) :-
parent(X,Z),
male(X),
parent(Z,Y).

The cost model guides

programmers away from

solutions like this. Why do

all that work if X is not

male?

Although logically

identical, this solution

may be much faster

since it restricts early.

General Cost Model

� Clause order in the database, and condition

order in each rule, can affect cost

� Can’t reduce to simple guidelines, since the

best order often depends on the query as

well as the database

Chapter Twenty-One Modern Programming Languages, 2nd ed. 35

Outline

� A cost model for lists

� A cost model for function calls

� A cost model for Prolog search

� A cost model for arrays

� Spurious cost models

Chapter Twenty-One Modern Programming Languages, 2nd ed. 36

Multidimensional Arrays

� Many languages support them

� In C:

int a[1000][1000];

� This defines a million integer variables

� One a[i][j] for each pair of i and j
with 0 ≤ i < 1000 and 0 ≤ j < 1000

Chapter Twenty-One Modern Programming Languages, 2nd ed. 37

Which Is Faster?

Chapter Twenty-One Modern Programming Languages, 2nd ed. 38

int addup1
(int a[1000][1000]) {

int total = 0;
int i = 0;
while (i < 1000) {
int j = 0;
while (j < 1000) {
total += a[i][j];
j++;

}
i++;

}
return total;

}

int addup2
(int a[1000][1000]) {

int total = 0;
int j = 0;
while (j < 1000) {
int i = 0;
while (i < 1000) {
total += a[i][j];
i++;

}
j++;

}
return total;

}

Varies j in the inner loop:

a[0][0] through a[0][999], then

a[1][0] through a[1][999], …

Varies i in the inner loop:

a[0][0] through a[999][0], then

a[0][1] through a[999][1], …

Sequential Access

� Memory hardware is generally optimized for
sequential access

� If the program just accessed word i, the hardware
anticipates in various ways that word i+1 will soon
be needed too

� So accessing array elements sequentially, in the
same order in which they are stored in memory, is
faster than accessing them non-sequentially

� In what order are elements stored in memory?

Chapter Twenty-One Modern Programming Languages, 2nd ed. 39

1D Arrays In Memory

� For one-dimensional arrays, a natural layout

� An array of n elements can be stored in a block of
n × size words

– size is the number of words per element

� The memory address of A[i] can be computed as
base + i × size:

– base is the start of A’s block of memory

– (Assumes indexes start at 0)

� Sequential access is natural—hard to avoid

Chapter Twenty-One Modern Programming Languages, 2nd ed. 40

2D Arrays?

� Often visualized as a grid

� A[i][j] is row i, column j:

� Must be mapped to linear memory…

Chapter Twenty-One Modern Programming Languages, 2nd ed. 41

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

row 0

row 1

co
lu

m
n 0

co
lu

m
n 1

co
lu

m
n 2

co
lu

m
n 3

row 2

A 3-by-4 array: 3 rows

of 4 columns

Row-Major Order

� One whole row at a time

� An m-by-n array takes m × n × size words

� Address of A[i][j] is

base + (i × n × size) + (j × size)

Chapter Twenty-One Modern Programming Languages, 2nd ed. 42

0,0 0,1 0,2 0,3 1,0 1,1 1,2 1,3 2,0 2,1 2,2 2,3

row 0 row 1 row 2

Column-Major Order

� One whole column at a time

� An m-by-n array takes m × n × size words

� Address of A[i][j] is

base + (i × size) + (j × m × size)

Chapter Twenty-One Modern Programming Languages, 2nd ed. 43

0,0 1,0 2,0 0,1 1,1 2,1 0,2 1,2 2,2 0,3 1,3 2,3

column 0 column 1 column 2 column 3

So Which Is Faster?

Chapter Twenty-One Modern Programming Languages, 2nd ed. 44

int addup1
(int a[1000][1000]) {

int total = 0;
int i = 0;
while (i < 1000) {
int j = 0;
while (j < 1000) {
total += a[i][j];
j++;

}
i++;

}
return total;

}

int addup2
(int a[1000][1000]) {

int total = 0;
int j = 0;
while (j < 1000) {
int i = 0;
while (i < 1000) {
total += a[i][j];
i++;

}
j++;

}
return total;

}

C uses row-major order, so this one is

faster: it visits the elements in the same

order in which they are allocated in

memory.

Other Layouts
� Another common

strategy is to treat a 2D
array as an array of
pointers to 1D arrays

� Rows can be different
sizes, and unused ones
can be left unallocated

� Sequential access of
whole rows is efficient,
like row-major order

Chapter Twenty-One Modern Programming Languages, 2nd ed. 45

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

row 0

row 1

row 2

Higher Dimensions

� 2D layouts generalize for higher dimensions

� For example, generalization of row-major

(odometer order) matches this access order:

� Rightmost subscript varies fastest

Chapter Twenty-One Modern Programming Languages, 2nd ed. 46

for each i0

for each i1

...
for each in-2

for each in-1

access A[i0][i1]…[in-2][in-1]

Is Array Layout Visible?

� In C, it is visible through pointer arithmetic

– If p is the address of a[i][j], then p+1 is the
address of a[i][j+1]: row-major order

� Fortran also makes it visible

– Overlaid allocations reveal column-major order

� Ada usually uses row-major, but hides it

– Ada programs would still work if layout changed

� But for all these languages, it is visible as a part of
the cost model

Chapter Twenty-One Modern Programming Languages, 2nd ed. 47

Outline

� A cost model for lists

� A cost model for function calls

� A cost model for Prolog search

� A cost model for arrays

� Spurious cost models

Chapter Twenty-One Modern Programming Languages, 2nd ed. 48

Question

Chapter Twenty-One Modern Programming Languages, 2nd ed. 49

int max(int i, int j) {
return i>j?i:j;

}

int main() {
int i,j;
double sum = 0.0;
for (i=0; i<10000; i++) {
for (j=0; j<10000; j++) {
sum += max(i,j);

}
}
printf("%d\n", sum);

}

If we replace this with a

direct computation,

sum += (i>j?i:j)

how much faster will the

program be?

Inlining

� Replacing a function call with the body of

the called function is called inlining

� Saves the overhead of making a function

call: push, call, return, pop

� Usually minor, but for something as simple

as max the overhead might dominate the

cost of the executing the function body

Chapter Twenty-One Modern Programming Languages, 2nd ed. 50

Cost Model

� Function call overhead is comparable to the

cost of a small function body

� This guides programmers toward solutions

that use inlined code (or macros, in C)

instead of function calls, especially for

small, frequently-called functions

Chapter Twenty-One Modern Programming Languages, 2nd ed. 51

Wrong!

� Unfortunately, this model is often wrong

� Any respectable C compiler can perform

inlining automatically

� (Gnu C does this with –O2 for small

functions)

� Our example runs at exactly the same speed

whether we inline manually, or let the

compiler do it

Chapter Twenty-One Modern Programming Languages, 2nd ed. 52

Applicability

� Not just a C phenomenon—many language
systems for different languages do inlining

� (It is especially important, and often
implemented, for object-oriented languages)

� Usually it is a mistake to clutter up code
with manually inlined copies of function
bodies

� It just makes the program harder to read and
maintain, but no faster after automatic
optimization

Chapter Twenty-One Modern Programming Languages, 2nd ed. 53

Cost Models Change

� For the first 10 years or so, C compilers that

could do inlining were not generally

available

� It made sense to manually inline in

performance-critical code

� Another example is the old register
declaration from C

Chapter Twenty-One Modern Programming Languages, 2nd ed. 54

Conclusion

� Some cost models are language-system-
specific: does this C compiler do inlining?

� Others more general: tail-call optimization
is a safe bet for all functional language
systems and most other language systems

� All are an important part of the working
programmer’s expertise, though rarely part
of the language specification

� No substitute for good algorithms!

Chapter Twenty-One Modern Programming Languages, 2nd ed. 55

