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A Little Demo
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public class Test {

public static void main(String[] args) {

int i = Integer.parseInt(args[0]);

int j = Integer.parseInt(args[1]);

System.out.println(i/j);

}

}

> javac Test.java

> java Test 6 3

2

>



Exceptions
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> java Test

Exception in thread "main" 

java.lang.ArrayIndexOutOfBoundsException: 0

at Test.main(Test.java:3)

> java Test 6 0

Exception in thread "main" 

java.lang.ArithmeticException: / by zero

at Test.main(Test.java:4)

In early languages, that’s all that happened: error message, 

core dump, terminate.

Modern languages like Java support exception handling.
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Some Predefined Exceptions
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Java Exception Code to Cause It

NullPointerException String s = null;

s.length();

ArithmeticException int a = 3;

int b = 0;

int q = a/b;

ArrayIndexOutOfBoundsException int[] a = new int[10];

a[10];

ClassCastException Object x = 

new Integer(1);

String s = (String) x;

StringIndexOutOfBoundsException String s = "Hello";

s.charAt(5);



An Exception Is An Object

� The names of exceptions are class names, 

like NullPointerException

� Exceptions are objects of those classes

� In the previous examples, the Java language 

system automatically creates an object of an 

exception class and throws it

� If the program does not catch it, it 

terminates with an error message
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Throwable Classes

� To be thrown as an exception, an object 
must be of a class that inherits from the 
predefined class Throwable

� There are four important predefined classes 
in that part of the class hierarchy:

– Throwable

– Error

– Exception

– RuntimeException
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Java will only throw objects 

of a class descended from 
Throwable

Classes derived from 
Error are used for 

serious, system-

generated errors, like 
OutOfMemoryError, 

that usually cannot be 

recovered from

Classes derived from 
Exception are used 

for ordinary errors that a 

program might want to 
catch and recover from

Classes derived from 
RuntimeException are 

used for ordinary system-

generated errors, like 
ArithmeticException

Exception

Object

Throwable

Error

RuntimeException

…

…

…
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The try Statement

� Simplified… full syntax later

� The <type> is a throwable class name

� Does the try part

� Does the catch part only if the try part 
throws an exception of the given <type>
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<try-statement> ::= <try-part> <catch-part>
<try-part> ::= try <compound-statement>
<catch-part> ::= catch (<type> <variable-name>)

<compound-statement>



Example
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public class Test {

public static void main(String[] args) {

try {

int i = Integer.parseInt(args[0]);

int j = Integer.parseInt(args[1]);

System.out.println(i/j);

}

catch (ArithmeticException a) {

System.out.println("You're dividing by zero!");

}

}

} This will catch and handle any ArithmeticException.

Other exceptions will still get the language system’s default 

behavior.



Example

� Catch type chooses exceptions to catch:

– ArithmeticException got zero division

– RuntimeException would get both 

examples above

– Throwable would get all possible exceptions
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> java Test 6 3

2

> java Test 6 0

You're dividing by zero!

> java Test

Exception in thread "main" 

java.lang.ArrayIndexOutOfBoundsException: 0

at Test.main(Test.java:3)



After The try Statement

� A try statement can be just another in a 
sequence of statements

� If no exception occurs in the try part, the 
catch part is not executed

� If no exception occurs in the try part, or if 
there is an exception which is caught in the 
catch part, execution continues with the 
statement following the try statement
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Exception Handled
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System.out.print("1, ");

try {

String s = null;

s.length();

}

catch (NullPointerException e) {

System.out.print("2, ");

}

System.out.println("3");

This just prints the line 

1, 2, 3



Throw From Called Method

� The try statement gets a chance to catch 

exceptions thrown while the try part runs

� That includes exceptions thrown by 

methods called from the try part
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Example

� If g throws an ArithmeticException, 
that it does not catch, f will get it

� In general, the throw and the catch can be 
separated by any number of method 
invocations
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void f() {

try { 

g(); 

} 

catch (ArithmeticException a) {

… 

}

}



� If z throws an exception 

it does not catch, z’s 

activation stops…

� …then y gets a chance to 

catch it; if it doesn’t, y’s 

activation stops…

� …and so on all the way 

back to f
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y’s activation 

record 

z’s activation 

record 

f’s activation 

record 

g’s activation 

record 

... 



Long-Distance Throws

� That kind of long-distance throw is one of 

the big advantages of exception handling

� All intermediate activations between the 

throw and the catch are stopped and popped

� If not throwing or catching, they need not 

know anything about it
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Multiple catch Parts

� To catch more than one kind of exception, a 
catch part can specify some general 
superclass like RuntimeException

� But usually, to handle different kinds of 
exceptions differently, you use multiple 
catch parts
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<try-statement> ::= <try-part> <catch-parts>
<try-part> ::= try <compound-statement>
<catch-parts> ::= <catch-part> <catch-parts>

| <catch-part>
<catch-part> ::= catch (<type> <variable-name>)

<compound-statement>



Example
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public static void main(String[] args) {

try {

int i = Integer.parseInt(args[0]);

int j = Integer.parseInt(args[1]);

System.out.println(i/j);

}

catch (ArithmeticException a) {

System.out.println("You're dividing by zero!");

}

catch (ArrayIndexOutOfBoundsException a) {

System.out.println("Requires two parameters.");

}

} This will catch and handle both ArithmeticException 

and ArrayIndexOutOfBoundsException



Example
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public static void main(String[] args) {

try {

int i = Integer.parseInt(args[0]);

int j = Integer.parseInt(args[1]);

System.out.println(i/j);

}

catch (ArithmeticException a) {

System.out.println("You're dividing by zero!");

}

catch (ArrayIndexOutOfBoundsException a) {

System.out.println("Requires two parameters.");

}

catch (RuntimeException a) {

System.out.println("Runtime exception.");

}

}



Overlapping Catch Parts

� If an exception from the try part matches 
more than one of the catch parts, only the 
first matching catch part is executed

� A common pattern: catch parts for 
specific cases first, and a more general one 
at the end

� Note that Java does not allow unreachable 
catch parts, or unreachable code in 
general
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The throw Statement

� Most exceptions are thrown automatically 

by the language system

� Sometimes you want to throw your own

� The <expression> is a reference to a 

throwable object—usually, a new one:
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<throw-statement> ::= throw <expression> ;

throw new NullPointerException();



Custom Throwable Classes
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public class OutOfGas extends Exception {

}

System.out.print("1, ");

try {

throw new OutOfGas();

}

catch (OutOfGas e) {

System.out.print("2, ");

}

System.out.println("3");



Using The Exception Object

� The exception that was thrown is available 
in the catch block—as that parameter

� It can be used to communicate information 
from the thrower to the catcher

� All classes derived from Throwable
inherit a method printStackTrace

� They also inherit a String field with a 
detailed error message, and a 
getMessage method to access it
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Example
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public class OutOfGas extends Exception {

public OutOfGas(String details) {

super(details);

}

}

try {

throw new OutOfGas("You have run out of gas.");

}

catch (OutOfGas e) {

System.out.println(e.getMessage());

}

This calls a base-class constructor to 

initialize the field returned by 
getMessage().



About super In Constructors

� The first statement in a constructor can be a 
call to super (with parameters, if needed)

� That calls a base class constructor

� Used to initialize inherited fields

� All constructors (except in Object) start 
with a call to another constructor—if you 
don’t include one, Java calls super()
implicitly
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More About Constructors

� Also, all classes have at least one 

constructor—if you don’t include one, Java 

provides a no-arg constructor implicitly
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public class OutOfGas extends Exception {

}

public class OutOfGas extends Exception {

public OutOfGas() {

super();

}

} These are equivalent!
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public class OutOfGas extends Exception {

private int miles;

public OutOfGas(String details, int m) {

super(details);

miles = m;

}

public int getMiles() {

return miles;

}

}

try {

throw new OutOfGas("You have run out of gas.",19);

}

catch (OutOfGas e) {

System.out.println(e.getMessage());

System.out.println("Odometer: " + e.getMiles());

}
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Checked Exceptions

� This method will not compile: “The 
exception OutOfGas is not handled”

� Java has not complained about this in our 
previous examples—why now?

� Java distinguishes between two kinds of 
exceptions: checked and unchecked
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void z() {

throw new OutOfGas("You have run out of gas.", 19");

}



Chapter Seventeen Modern Programming Languages, 2nd ed. 33

The unchecked exceptions classes are Error and 

RuntimeException and their descendants.  All 

others are checked.

Throwable

Error

RuntimeException

…

…

…

Exception

checked 

exceptions

unchecked 

exceptions



What Gets Checked?

� A method that can get a checked exception 

is not permitted to ignore it

� It can catch it

– That is, the code that generates the exception 

can be inside a try statement with a catch

part for that checked exception

� Or, it can declare that it does not catch it

– Using a throws clause
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The Throws Clause

� A throws clause lists one or more 
throwable classes separated by commas

� This one always throws, but in general, the 
throws clause means might throw

� So any caller of z must catch OutOfGas, 
or place it in its own throws clause
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void z() throws OutOfGas {

throw new OutOfGas("You have run out of gas.", 19);

}



� If z declares that it 

throws OutOfGas…

� …then y must catch it, or 

declare it throws it too…

� …and so on all the way 

back to f
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y’s activation 

record 

z’s activation 

record 

f’s activation 

record 

g’s activation 

record 

... 



Why Use Checked Exceptions

� The throws clause is like documentation: 
it tells the reader that this exception can 
result from a call of this method

� But it is verified documentation; if any 
checked exception can result from a method 
call, the compiler will insist it be declared

� This can make programs easier to read and 
more likely to be correct
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How To Avoid Checked 

Exceptions

� You can always define your own exceptions 

using a different base class, such as Error

or Throwable

� Then they will be unchecked

� Weigh the advantages carefully
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Handling Errors

� Example: popping an empty stack

� Techniques:

– Preconditions only

– Total definition

– Fatal errors

– Error flagging

– Using exceptions
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Preconditions Only

� Document preconditions necessary to avoid 

errors

� Caller must ensure these are met, or 

explicitly check if not sure
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/**

* Pop the top int from this stack and return it.

* This should be called only if the stack is

* not empty.

* @return the popped int

*/

public int pop() {

Node n = top;

top = n.getLink();

return n.getData();

}

if (s.hasMore()) x = s.pop();

else …



Drawbacks

� If the caller makes a mistake, and pops an 

empty stack: NullPointerException

– If that is uncaught, program crashes with an 

unhelpful error message

– If caught, program relies on undocumented 

internals; an implementation using an array 

would cause a different exception
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Total Definition

� We can change the definition of pop so that 
it always works

� Define some standard behavior for popping 
an empty stack

� Like character-by-character file I/O in C: an 
EOF character at the end of the file

� Like IEEE floating-point: NaN and signed 
infinity results
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/**

* Pop the top int from this stack and return it.

* If the stack is empty we return 0 and leave the

* stack empty.

* @return the popped int, or 0 if the stack is empty

*/

public int pop() {

Node n = top;

if (n==null) return 0;

top = n.getLink();

return n.getData();

}



Drawbacks

� Can mask important problems

� If a client pops more than it pushes, this is 

probably a serious bug that should be 

detected and fixed, not concealed
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Fatal Errors

� The old-fashioned approach: just crash!

� Preconditions, plus decisive action

� At least this does not conceal the problem…
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/**

* Pop the top int from this stack and return it.

* This should be called only if the stack is

* not empty.  If called when the stack is empty,

* we print an error message and exit the program.

* @return the popped int

*/

public int pop() {

Node n = top;

if (n==null) {

System.out.println("Popping an empty stack!");

System.exit(-1);

}

top = n.getLink();

return n.getData();

}



Drawbacks

� Not an object-oriented style: an object 
should do things to itself, not to the rest of 
the program

� Inflexible: different clients may want to 
handle the error differently

– Terminate

– Clean up and terminate

– Repair the error and continue

– Ignore the error

– Etc.
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Error Flagging

� The method that detects the error can flag it 

somehow

– By returning a special value (like C malloc)

– By setting a global variable (like C errno)

– By setting an instance variable to be checked by 

a method call (like C ferror(f))

� Caller must explicitly test for error
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/**

* Pop the top int from this stack and return it.

* This should be called only if the stack is

* not empty.  If called when the stack is empty,

* we set the error flag and return an undefined

* value.

* @return the popped int if stack not empty

*/

public int pop() {

Node n = top;

if (n==null) {

error = true;

return 0;

}

top = n.getLink();

return n.getData();

}
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/**

* Return the error flag for this stack.  The error

* flag is set true if an empty stack is ever popped.

* It can be reset to false by calling resetError().

* @return the error flag

*/

public boolean getError() {

return error;

}

/**

* Reset the error flag.  We set it to false.

*/

public void resetError() {

error = false;

}
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/**

* Pop the two top integers from the stack, divide

* them, and push their integer quotient.  There

* should be at least two integers on the stack

* when we are called.  If not, we leave the stack

* empty and set the error flag.

*/

public void divide() {

int i = pop();

int j = pop();

if (getError()) return;

push(i/j);

} The kind of explicit error check required 

by an error flagging technique.

Note that divide’s caller may also have 

to check it, and its caller, and so on…



Using Exceptions

� The method that first finds the error throws 

an exception

� May be checked or unchecked

� Part of the documented behavior of the 

method
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/**

* Pop the top int from this stack and return it.

* @return the popped int

* @exception EmptyStack if stack is empty

*/

public int pop() throws EmptyStack {

Node n = top;

if (n==null) throw new EmptyStack();

top = n.getLink();

return n.getData();

}
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/**

* Pop the two top integers from the stack, divide

* them, and push their integer quotient.

* @exception EmptyStack if stack runs out

*/

public void divide() throws EmptyStack {

int i = pop();

int j = pop();

push(i/j);

}

Caller makes no error check—just passes 

the exception along if one occurs



Advantages

� Good error message even if uncaught

� Documented part of the interface

� Error caught right away, not masked

� Caller need not explicitly check for error

� Error can be ignored or handled flexibly
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The Full try Syntax

� There is an optional finally part

� No matter what happens, the finally part 
is always executed at the end of the try
statement

Chapter Seventeen Modern Programming Languages, 2nd ed. 59

<try-statement> ::= <try-part> <catch-parts>
| <try-part> <catch-parts> <finally-part>
| <try-part> <finally-part>

<try-part> ::= try <compound-statement>
<catch-parts> ::= <catch-part> <catch-parts> | <catch-part>
<catch-part> ::= catch (<type> <variable-name>)

<compound-statement>
<finally-part> ::= finally <compound-statement>



Using finally

� The finally part is usually used for 
cleanup operations

� Whether or not there is an exception, the 
file is closed
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file.open();

try {

workWith(file);

}

finally {

file.close();

}



Example
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System.out.print("1");

try {

System.out.print("2");

if (true) throw new Exception();

System.out.print("3");

}

catch (Exception e) {

System.out.print("4");

}

finally {

System.out.print("5");

}

System.out.println("6");

What does this print?

What if we change 

new Exception() to 

new Throwable()?
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Parts We Skipped

� Fundamentals

– Primitive types: byte, short, long, float

– The enum type constructor for enumerations

– Various statements: do, for, break, 

continue, switch, assert

� Refinements

– Inner classes: define classes in any scope: 

inside other classes, in blocks, in expressions

– Generics: we saw only a quick peek
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More Parts We Skipped

� Packages

– Classes are grouped into packages

– In many Java systems, the source files in a directory 

correspond to a package

– Default access (without public, private or 

protected) is package-wide

� Concurrency

– Synchronization constructs for multiple threads

– Parts of the API for creating threads
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More Parts We Skipped
� The vast API

� containers (stacks, queues, hash tables, etc.)

� graphical user interfaces

� 2D and 3D graphics 

� math

� pattern matching with regular expressions

� file IO

� network IO and XML

� encryption and security

� remote method invocation

� interfacing to databases and other tools
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