
Object Orientation

Chapter Sixteen Modern Programming Languages, 2nd ed. 1

Definitions

� Give definitions for the following:

– Object-oriented language

– Object-oriented programming

� Then again, why bother?

Chapter Sixteen Modern Programming Languages, 2nd ed. 2

Observations

� Object-oriented programming is not the

same as programming in an object-oriented

language

� Object-oriented languages are not all like

Java

Chapter Sixteen Modern Programming Languages, 2nd ed. 3

Outline

� 16.2 Object-oriented programming

– OO in ML

– Non-OO in Java

� 16.3 Object-oriented language features

– Classes

– Prototypes

– Inheritance

– Encapsulation

– Polymorphism

Chapter Sixteen Modern Programming Languages, 2nd ed. 4

Chapter Sixteen Modern Programming Languages, 2nd ed. 5

public class Node {
private String data;
private Node link;
public Node(String theData, Node theLink) {
data = theData;
link = theLink;

}
public String getData() {
return data;

}
public Node getLink() {
return link;

}
}

A previous Java example: a node

used to build a stack of strings

Node Class

� Two fields, data and link
� One constructor that sets data and link
� Two methods: getData and getLink

� In the abstract, an object takes a message
(“get data”, “get link”) and produces a
response (a String or another object)

� An object is a bit like a function of type
message->response

Chapter Sixteen Modern Programming Languages, 2nd ed. 6

Chapter Sixteen Modern Programming Languages, 2nd ed. 7

datatype message =
GetData

| GetLink;

datatype response =
Data of string

| Object of message -> response;

fun node data link GetData = Data data
| node data link GetLink = Object link;

Same OO idea in ML.

We have a type for messages and a type for responses.

To construct a node we call node, passing the first two

parameters.

Result is a function of type message->response.

Node Examples

� Objects responding to messages

� null has to be something of the object type

(message->response); we could use

Chapter Sixteen Modern Programming Languages, 2nd ed. 8

- val n1 = node "Hello" null;
val n1 = fn : message -> response

- val n2 = node "world" n1;
val n2 = fn : message -> response

- n1 GetData;
val it = Data "Hello" : response

- n2 GetData;
val it = Data "world" : response

fun null _ = Data "null";

Stack Class

� One field, top

� Three methods: hasMore, add, remove

� Implemented using a linked list of node
objects

Chapter Sixteen Modern Programming Languages, 2nd ed. 9

Chapter Sixteen Modern Programming Languages, 2nd ed. 10

datatype message =
IsNull

| Add of string
| HasMore
| Remove
| GetData
| GetLink;

datatype response =
Pred of bool

| Data of string
| Removed of (message -> response) * string
| Object of message -> response;

fun root _ = Pred false;

Expanded vocabulary of

messages and responses,

for both node and

stack

Root class handles all

messages by returning
Pred false

Chapter Sixteen Modern Programming Languages, 2nd ed. 11

fun null IsNull = Pred true
| null message = root message;

fun node data link GetData = Data data
| node data link GetLink = Object link
| node _ _ message = root message;

fun stack top HasMore =
let val Pred(p) = top IsNull
in Pred(not p) end

| stack top (Add data) =
Object(stack (node data top))

| stack top Remove =
let
val Object(next) = top GetLink
val Data(data) = top GetData

in
Removed(stack next, data)

end
| stack _ message = root message;

Chapter Sixteen Modern Programming Languages, 2nd ed. 12

- val a = stack null;
val a = fn : message -> response

- val Object(b) = a (Add "the plow.");
val b = fn : message -> response

- val Object(c) = b (Add "forgives ");
val c = fn : message -> response

- val Object(d) = c (Add "The cut worm ");
val d = fn : message -> response

- val Removed(e,s1) = d Remove;
val e = fn : message -> response

val s1 = "The cut worm " : string

- val Removed(f,s2) = e Remove;
val f = fn : message -> response

val s2 = "forgives " : string

- val Removed(_,s3) = f Remove;
val s3 = "the plow." : string

- s1^s2^s3;
val it = "The cut worm forgives the plow." : string

Inheritance, Sort Of

� Here is a peekableStack like the one in

Java from Chapter Fifteen:

� This style is rather like a Smalltalk system

– Message passing

– Messages not statically typed

– Unhandled messages passed back to superclass

Chapter Sixteen Modern Programming Languages, 2nd ed. 13

fun peekableStack top Peek = top GetData
| peekableStack top message = stack top message;

Thoughts
� Obviously, not a good way to use ML

– Messages and responses not properly typed

– No compile-time checking of whether a given
object can handle a given message

� (Objective CAML is a dialect that integrates
OO features into ML)

� The point is: it’s possible

� OO programming is not the same as
programming in an OO language

Chapter Sixteen Modern Programming Languages, 2nd ed. 14

Outline

� Object-oriented programming

– OO in ML

– Non-OO in Java

� Object-oriented language features

– Classes

– Prototypes

– Inheritance

– Encapsulation

– Polymorphism

Chapter Sixteen Modern Programming Languages, 2nd ed. 15

Java

� Java is better than ML at supporting an

object-oriented style of programming

� But using Java is no guarantee of object-

orientation

– Can use static methods

– Can put all code in one big class

– Can use classes as records—public fields and

no methods, like C structures

Chapter Sixteen Modern Programming Languages, 2nd ed. 16

Classes Used As Records

Chapter Sixteen Modern Programming Languages, 2nd ed. 17

public class Node {
public String data; // Each node has a String...
public Node link; // ...and a link to the next Node

}

public class Stack{
public Node top; // The top node in the stack

}

A Non-OO Stack

Chapter Sixteen Modern Programming Languages, 2nd ed. 18

public class Main {
private static void add(Stack s, String data) {
Node n = new Node();
n.data = data;
n.link = s.top;
s.top = n;

}
private static boolean hasMore(Stack s) {
return (s.top!=null);

}
private static String remove(Stack s) {
Node n = s.top;
s.top = n.link;
return n.data;

}
…

}

Note direct references to public

fields—no methods required, data

and code completely separate

Polymorphism

� In Chapter Fifteen: Worklist interface

implemented by Stack, Queue, etc.

� There is a common trick to support this kind

of thing in non-OO solutions

� Each record starts with an element of an

enumeration, identifying what kind of

Worklist it is…

Chapter Sixteen Modern Programming Languages, 2nd ed. 19

A Non-OO Worklist

Chapter Sixteen Modern Programming Languages, 2nd ed. 20

public class Worklist {
public static final int STACK = 0;
public static final int QUEUE = 1;
public static final int PRIORITYQUEUE = 2;
public int type; // one of the above Worklist types
public Node front; // front Node in the list
public Node rear; // unused when type==STACK
public int length; // unused when type==STACK

}

The type field says what kind of Worklist it is.

Meanings of other fields depend on type.

Methods that manipulate Worklist records must branch on

type…

Branch On Type

Chapter Sixteen Modern Programming Languages, 2nd ed. 21

private static void add(Worklist w, String data) {
if (w.type==Worklist.STACK) {
Node n = new Node();
n.data = data;
n.link = w.front;
w.front = n;

}
else if (w.type==Worklist.QUEUE) {

the implementation of add for queues

}
else if (w.type==Worklist.PRIORITYQUEUE) {

the implementation of add for priority queues

}
} Every method that operates on a Worklist will

have to repeat this branching pattern

Drawbacks

� Repeating the branching code is tedious and

error-prone

� Depending on the language, there may be

no way to avoid wasting space if different

kinds of records require different fields

� Some common maintenance tasks are

hard—like adding a new kind of record

Chapter Sixteen Modern Programming Languages, 2nd ed. 22

OO Advantages

� When you call an interface method,
language system automatically dispatches to
the right implementation for the object

� Different implementations of an interface
do not have to share fields

� Adding a new class that implements an
interface is easy—no need to modify
existing code

Chapter Sixteen Modern Programming Languages, 2nd ed. 23

Thoughts
� OO programming is not the same as

programming in an OO language

– Can be done in a non-OO language

– Can be avoided in an OO language

� Usually, an OO language and an OO
programming style do and should go
together

– You usually get a worse ML design by using an
OO style

– You usually get a better Java design by using
an OO style (hint: avoid enumerations)

Chapter Sixteen Modern Programming Languages, 2nd ed. 24

Outline

� 16.2 Object-oriented programming

– OO in ML

– Non-OO in Java

� 16.3 Object-oriented language features

– Classes

– Prototypes

– Inheritance

– Encapsulation

– Polymorphism

Chapter Sixteen Modern Programming Languages, 2nd ed. 25

Classes

� Most OO languages, including Java, have
some kind of class construct

� Classes serve a variety of purposes,
depending on the language:

– Group fields and methods together

– Are instantiable: the running program can
create as many objects of a class as it needs

– Serve as the unit of inheritance: derived class
inherits from base class or classes

Chapter Sixteen Modern Programming Languages, 2nd ed. 26

Classes

� More purposes:

– Serve as a type: objects (or references to them)

can have a class or superclass name as their

static type

– House static fields and methods: one per class,

not one per instance

– Serve as a labeled namespace; control the

visibility of contents outside the class definition

Chapter Sixteen Modern Programming Languages, 2nd ed. 27

Without Classes

� Imagine an OO language with no classes

� With classes, you create objects by
instantiating a class

� Without classes, you could create an object
from scratch by listing all its methods and
fields on the spot

� Or, you could clone an existing prototype
object and then modify parts of it

Chapter Sixteen Modern Programming Languages, 2nd ed. 28

Chapter Sixteen Modern Programming Languages, 2nd ed. 29

x = new Stack();

x = {
private Node top = null;
public boolean hasMore() {
return (top!=null);

}
public String remove() {
Node n = top;
top = n.getLink();
return n.getData();

}
…

}

x = y.clone();
x.top = null;

With classes:

instantiation

Without classes:

raw object creation

Without classes:

prototype cloning

Prototypes

� A prototype is an object that is copied to

make similar objects

� When making copies, a program can modify

the values of fields, and can add or remove

fields and methods

� Prototype-based languages (like Self) use

this concept instead of classes

Chapter Sixteen Modern Programming Languages, 2nd ed. 30

Without Classes

� Instantiation is only one use of classes

� Other things prototype-based languages

must do without:

– Classes as types: most prototype-based

languages are dynamically typed

– Inheritance: prototype-based languages use a

related dynamic technique called delegation

Chapter Sixteen Modern Programming Languages, 2nd ed. 31

Inheritance

� Simple enough in outline

– Set up a relationship between two classes: a

derived class and a base class

– Derived class gets things from the base class

� But what a derived class gets from the base

class (or classes) depends on the

language…

Chapter Sixteen Modern Programming Languages, 2nd ed. 32

Inheritance Questions

� More than one base class allowed?

– Single inheritance: Smalltalk, Java

– Multiple inheritance: C++, CLOS, Eiffel

� Forced to inherit everything?

– Java: derived class inherits all methods, fields

– Sather: derived class can rename inherited

methods (useful for multiple inheritance), or

just undefine them

Chapter Sixteen Modern Programming Languages, 2nd ed. 33

Inheritance Questions

� Universal base class?

– A class from which all inherit: Java’s Object

– No such class: C++

� Specification inherited?

– Method obligations, as in Java

– More specification: invariants, as in Eiffel

� Types inherited?

– Java: all types of the base class

Chapter Sixteen Modern Programming Languages, 2nd ed. 34

Inheritance Questions

� Overriding, hiding, etc.?

– Java, roughly (skipping many details):

� Constructors can access base-class constructors with
super; implicit call of no-arg super constructor

� New instance method of the same name and type
overrides inherited one; overridden one can be
called using super

� New field or static method hides inherited ones; still
accessible using super or base class static types

� Languages differ considerably

Chapter Sixteen Modern Programming Languages, 2nd ed. 35

Encapsulation

� Found in virtually all modern programming

languages, not just OO ones

� Encapsulated program parts:

– Present a controlled interface

– Hide everything else

� In OO languages, objects are encapsulated

� Different languages do it differently

Chapter Sixteen Modern Programming Languages, 2nd ed. 36

Visibility Of Fields And Methods

� Java: four levels of visibility

– private: only within class

– Default access: throughout package

– protected: package + derived classes

– public: everywhere

� Some OO languages (Smalltalk, LOOPS,
Self) have less control: everything public

� Others have more: in Eiffel, features can be
exposed to a specific set of client classes

Chapter Sixteen Modern Programming Languages, 2nd ed. 37

Polymorphism

� Found in many languages, not just OO ones

� Special variation in many OO languages:

– When different classes have methods of the

same name and type, like a stack class and a

queue class that both have an add method

– When language permits a call of that method in

contexts where the class of the object is not

known statically

Chapter Sixteen Modern Programming Languages, 2nd ed. 38

Example: Java

� Here, Drawable is an interface

� Class of object referred to by d is not

known at compile time

Chapter Sixteen Modern Programming Languages, 2nd ed. 39

public static void flashoff(Drawable d, int k) {
for (int i = 0; i < k; i++) {
d.show(0,0);
d.hide();

}
}

Dynamic Dispatch

� In Java, static type of the reference may be
a superclass or interface of the actual class

� At runtime, the language system must find
the right method for the actual class

� That’s dynamic dispatch: the hidden,
implicit branch-on-class to implement
method calls

� Optional in C++; always used in Java and
most other OO languages

Chapter Sixteen Modern Programming Languages, 2nd ed. 40

Implementation And Type

� In Java, two mechanisms:

– A class inherits both types and implementation
from its base class

– A class gets additional types (but no
implementation) by implementing interfaces

� Partially separates inheritance of
implementation and inheritance of type

� Other OO languages differ in how much
they separate these two

Chapter Sixteen Modern Programming Languages, 2nd ed. 41

Implementation And Type
� In C++, no separation:

– One mechanism for general inheritance

– For inheriting type only, you can use an

abstract base class with no implementations

� In Sather, complete separation:

– A class can declare that it includes another

class, inheriting implementation but not type

– A class can declare that it is a subclass of an

abstract class, inheriting type but not

implementation (like Java interfaces)

Chapter Sixteen Modern Programming Languages, 2nd ed. 42

About Dynamic Typing

� Some OO languages use dynamic typing:
Smalltalk, Self

� An object may or may not be able to
respond to a particular message—no
compile-time check (like our ML trick)

� Total freedom: program can try using any
method for any object

� Polymorphism is not relevant here

Chapter Sixteen Modern Programming Languages, 2nd ed. 43

Conclusion

� Today, a cosmopolitan perspective:

– Object-oriented programming is not the same as

programming in an object-oriented language

– Object-oriented languages are not all like Java

� There is no single OO programming style or

set of OO language features: they are often

debated and they are evolving

� Be skeptical of definitions!

Chapter Sixteen Modern Programming Languages, 2nd ed. 44

