
Memory Management
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Dynamic Memory Allocation

� Lots of things need memory at runtime:

– Activation records

– Objects

– Explicit allocations: new, malloc, etc.

– Implicit allocations: strings, file buffers, arrays 
with dynamically varying size, etc.

� Language systems provide an important 
hidden player: runtime memory 
management
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Memory Model

� For now, assume that the OS grants each 

running program one or more fixed-size 

regions of memory for dynamic allocation

� We will model these regions as Java arrays

– To see examples of memory management code

– And, for practice with Java
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Declaring An Array

� A Java array declaration:

� Array types are reference types—an array is 

really an object, with a little special syntax

� The variable a above is initialized to null

� It can hold a reference to an array of int

values, but does not yet
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int[] a = null;



Creating An Array

� Use new to create an array object:

� We could have done it with one declaration 

statement, like this:
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int[] a = null;

a = new int[100];

int[] a = new int[100];



Using An Array

� Use a[i] to refer to an element (as lvalue 
or rvalue): a is an array reference 
expression and i is an int expression

� Use a.length to access length

� Array indexes are 0..(a.length-1)
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int i = 0;

while (i<a.length) {

a[i] = 5;

i++;

}



Memory Managers In Java
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public class MemoryManager {

private int[] memory;

/**

* MemoryManager constructor.

* @param initialMemory int[] of memory to manage

*/

public MemoryManager(int[] initialMemory) {

memory = initialMemory;

}

…

}
We will show Java implementations 

this way.  The initialMemory

array is the memory region provided 

by the operating system.
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Stacks Of Activation Records

� For almost all languages, activation records 

must be allocated dynamically

� For many, it suffices to allocate on call and 

deallocate on return

� This produces a stack of activation records: 

push on call, pop on return

� A simple memory management problem

Chapter Fourteen Modern Programming Languages, 2nd ed. 10



A Stack Illustration
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An empty stack of 8 

words.  The stack will 

grow down, from high 

addresses to lower 

addresses.  A reserved 

memory location (perhaps 

a register) records the 

address of the lowest 

allocated word.
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The program calls 

m.push(3), which 

returns 5: the address of the 

first of the 3 words 

allocated for an activation 

record.  Memory 

management uses an extra 

word to record the previous 

value of top.
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The program calls 

m.push(2), which 

returns 2: the address of the 

first of the 2 words 

allocated for an activation 

record.  The stack is now 

full—there is not room even 

for m.push(1).

For m.pop(), just do

top = memory[top]

to return to previous 

configuration.
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A Java Stack Implementation
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public class StackManager {

private int[] memory; // the memory we manage

private int top; // index of top stack block

/**

* StackManager constructor.

* @param initialMemory int[] of memory to manage

*/

public StackManager(int[] initialMemory) {

memory = initialMemory;

top = memory.length;

}
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/**

* Allocate a block and return its address.

* @param requestSize int size of block, > 0

* @return block address

* @throws StackOverflowError if out of stack space

*/

public int push(int requestSize) {

int oldtop = top;

top -= (requestSize+1); // extra word for oldtop

if (top<0) throw new StackOverflowError();

memory[top] = oldtop;

return top+1;

} The throw statement and 

exception handling are introduced 

in Chapter 17.
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/**

* Pop the top stack frame.  This works only if the

* stack is not empty.

*/

public void pop() {

top = memory[top];

}

}
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The Heap Problem

� Stack order makes implementation easy

� Not always possible: what if allocations and 

deallocations can come in any order?

� A heap is a pool of blocks of memory, with 

an interface for unordered runtime memory 

allocation and deallocation

� There are many mechanisms for this…
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First Fit

� A linked list of free blocks, initially 
containing one big free block

� To allocate:

– Search free list for first adequate block

– If there is extra space in the block, return the 
unused portion at the upper end to the free list

– Allocate requested portion (at the lower end)

� To free, just add to the front of the free list
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Heap Illustration
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A heap manager m with a memory 

array of 10 words, initially empty.

The link to the head of the free list is 

held in freeStart.

Every block, allocated or free, has its 

length in its first word.

Free blocks have free-list link in their 

second word, or –1 at the end of the 

free list.
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p1=m.allocate(4);

p1 will be 1—the address of the 

first of four allocated words.

An extra word holds the block 

length.

Remainder of the big free block was 

returned to the free list.
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p1=m.allocate(4);

p2=m.allocate(2);

p2 will be 6—the address of the 

first of two allocated words.

An extra word holds the block 

length.

Remainder of the free block was 

returned to the free list.
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p1=m.allocate(4);

p2=m.allocate(2);

m.deallocate(p1);

Deallocates the first allocated block.  

It returns to the head of the free list.
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p1=m.allocate(4);

p2=m.allocate(2);

m.deallocate(p1);

p3=m.allocate(1);
7: 

freeStart: 2 

6: 

5: 

4: 

3: 

2: 

1: 

0: 

 

second allocated 

block 

3 

2 

9: 

8: 

-1 

2 

 

8 

3 

third allocated 
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p3 will be 1—the address of the 

allocated word.

Notice that there were two suitable 

blocks.  The other one would have 

been an exact fit.  (Best Fit is 

another possible mechanism.)



A Java Heap Implementation
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public class HeapManager {

static private final int NULL = -1; // null link

public int[] memory; // the memory we manage

private int freeStart; // start of the free list

/**

* HeapManager constructor.

* @param initialMemory int[] of memory to manage

*/

public HeapManager(int[] initialMemory) {

memory = initialMemory;

memory[0] = memory.length; // one big free block

memory[1] = NULL; // free list ends with it

freeStart = 0; // free list starts with it

}
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/**

* Allocate a block and return its address.

* @param requestSize int size of block, > 0

* @return block address

* @throws OutOfMemoryError if no block big enough

*/

public int allocate(int requestSize) {

int size = requestSize + 1; // size with header

// Do first-fit search: linear search of the free 

// list for the first block of sufficient size.

int p = freeStart; // head of free list

int lag = NULL;

while (p!=NULL && memory[p]<size) {

lag = p; // lag is previous p

p = memory[p+1]; // link to next block

}

if (p==NULL) // no block large enough

throw new OutOfMemoryError();

int nextFree = memory[p+1]; // block after p
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// Now p is the index of a block of sufficient size,

// and lag is the index of p's predecessor in the

// free list, or NULL, and nextFree is the index of

// p's successor in the free list, or NULL.

// If the block has more space than we need, carve

// out what we need from the front and return the

// unused end part to the free list.

int unused = memory[p]-size; // extra space 

if (unused>1) { // if more than a header's worth

nextFree = p+size; // index of the unused piece

memory[nextFree] = unused; // fill in size 

memory[nextFree+1] = memory[p+1]; // fill in link

memory[p] = size; // reduce p's size accordingly

}

// Link out the block we are allocating and done.

if (lag==NULL) freeStart = nextFree;

else memory[lag+1] = nextFree;

return p+1; // index of useable word (after header)

}
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/**

* Deallocate an allocated block.  This works only if

* the block address is one that was returned by

* allocate and has not yet been deallocated.

* @param address int address of the block

*/

public void deallocate(int address) {

int addr = address-1; 

memory[addr+1] = freeStart;

freeStart = addr;

}

}



A Problem

� Consider this sequence:

� Final allocate will fail: we are breaking 
up large blocks but never reversing the 
process

� Need to coalesce adjacent free blocks
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p1=m.allocate(4);

p2=m.allocate(4);

m.deallocate(p1);

m.deallocate(p2);

p3=m.allocate(7);



A Solution

� We can implement a smarter deallocate

method:

– Maintain the free list sorted in address order

– When freeing, look at the previous free block 

and the next free block

– If adjacent, coalesce

� This is a lot more work than just returning 

the block to the head of the free list…
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/**

* Deallocate an allocated block.  This works only if

* the block address is one that was returned by

* allocate and has not yet been deallocated.

* @param address int address of the block

*/

public void deallocate(int address) {

int addr = address-1; // real start of the block

// Find the insertion point in the sorted free list

// for this block.

int p = freeStart;

int lag = NULL;

while (p!=NULL && p<addr) {

lag = p;

p = memory[p+1];

}
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// Now p is the index of the block to come after

// ours in the free list, or NULL, and lag is the

// index of the block to come before ours in the

// free list, or NULL.

// If the one to come after ours is adjacent to it,

// merge it into ours and restore the property

// described above.

if (addr+memory[addr]==p) {

memory[addr] += memory[p]; // add its size to ours

p = memory[p+1]; //

}
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if (lag==NULL) { // ours will be first free

freeStart = addr;

memory[addr+1] = p;

}

else if (lag+memory[lag]==addr) { // block before is

// adjacent to ours

memory[lag] += memory[addr]; // merge ours into it

memory[lag+1] = p;

}

else { // neither: just a simple insertion

memory[lag+1] = addr;

memory[addr+1] = p;

}

}



Quick Lists

� Small blocks tend to be allocated and 
deallocated much more frequently

� A common optimization: keep separate free 
lists for popular (small) block sizes

� On these quick lists, blocks are one size

� Delayed coalescing: free blocks on quick 
lists are not coalesced right away (but may 
have to be coalesced eventually)
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Fragmentation

� When free regions are separated by 

allocated blocks, so that it is not possible to 

allocate all of free memory as one block

� More generally: any time a heap manager is 

unable to allocate memory even though free

– If it allocated more than requested

– If it does not coalesce adjacent free blocks

– And so on…
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p1=m.allocate(4);

p2=m.allocate(1);

m.deallocate(p1);

p3=m.allocate(5);

The final allocation will fail because 

of fragmentation.
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Other Heap Mechanisms

� An amazing variety

� Three major issues:

– Placement—where to allocate a block

– Splitting—when and how to split large blocks

– Coalescing—when and how to recombine

� Many other refinements
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Placement

� Where to allocate a block

� Our mechanism: first fit from FIFO free list

� Some mechanisms use a similar linked list 

of free blocks: first fit, best fit, next fit, etc.

� Some mechanisms use a more scalable data 

structure like a balanced binary tree
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Splitting

� When and how to split large blocks

� Our mechanism: split to requested size

� Sometimes you get better results with less 

splitting—just allocate more than requested

� A common example: rounding up allocation 

size to some multiple
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Coalescing

� When and how to recombine adjacent free 

blocks

� We saw several varieties:

– No coalescing

– Eager coalescing

– Delayed coalescing (as with quick lists)
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Current Heap Links

� So far, the running program is a black box: 
a source of allocations and deallocations

� What does the running program do with 
addresses allocated to it?

� Some systems track current heap links

� A current heap link is a memory location 
where a value is stored that the running 
program will use as a heap address
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Tracing Current Heap Links
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To Find Current Heap Links

� Start with the root set: memory locations 
outside of the heap with links into the heap 

– Active activation records (if on the stack)

– Static variables, etc.

� For each memory location in the set, look at 
the allocated block it points to, and add all 
the memory locations in that block

� Repeat until no new locations are found
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Discarding Impossible Links

� Depending on the language and 
implementation, we may be able to discard 
some locations from the set:

– If they do not point into allocated heap blocks

– If they do not point to allocated heap blocks 
(Java, but not C)

– If their dynamic type rules out use as heap links

– If their static type rules out use as heap links 
(Java, but not C)
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Errors In Current Heap Links

� Exclusion errors:  a memory location that 

actually is a current heap link is left out

� Unused inclusion errors:  a memory 

location is included, but the program never 

actually uses the value stored there

� Used inclusion errors:  a memory location 

is included, but the program uses the value 

stored there as something other than a heap 

address—as an integer, for example
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Errors Are Unavoidable

� For heap manager purposes, exclusion 
errors are unacceptable

� We must include a location if it might be 
used as a heap link

� This makes unused inclusion errors 
unavoidable

� Depending on the language, used inclusions 
may also be unavoidable

Chapter Fourteen Modern Programming Languages, 2nd ed. 47



Used Inclusion Errors In C

� Static type and runtime value may be of no 

use in telling how a value will be used

� Variable x may be used either as a pointer 

or as an array of four characters
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union {

char *p;

char tag[4];

} x;



Heap Compaction

� One application for current heap links

� Manager can move allocated blocks:

– Copy the block to a new location

– Update all links to (or into) that block

� So it can compact the heap, moving all 

allocated blocks to one end, leaving one big 

free block and no fragmentation
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Some Common Pointer Errors
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type

p: ^Integer;

begin

new(p);

p^ := 21;

dispose(p);

p^ := p^ + 1

end

procedure Leak; 

type

p: ^Integer;

begin

new(p)

end;

Dangling pointer: this Pascal fragment 

uses a pointer after the block it points 

to has been deallocated

Memory leak: this Pascal procedure 

allocates a block but forgets to 

deallocate it



Garbage Collection

� Since so many errors are caused by 

improper deallocation…

� …and since it is a burden on the 

programmer to have to worry about it…

� …why not have the language system 

reclaim blocks automatically?

Chapter Fourteen Modern Programming Languages, 2nd ed. 52



Three Major Approaches

� Mark and sweep

� Copying

� Reference counting
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Mark And Sweep

� A mark-and-sweep collector uses current 

heap links in a two-stage process:

– Mark: find the live heap links and mark all the 

heap blocks linked to by them

– Sweep: make a pass over the heap and return 

unmarked blocks to the free pool

� Blocks are not moved, so both kinds of 

inclusion errors are tolerated
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Copying Collection

� A copying collector divides memory in half, 
and uses only one half at a time

� When one half becomes full, find live heap 
links, and copy live blocks to the other half

� Compacts as it goes, so fragmentation is 
eliminated

� Moves blocks: cannot tolerate used 
inclusion errors
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Reference Counting

� Each block has a counter of heap links to it

� Incremented when a heap link is copied, 

decremented when a heap link is discarded

� When counter goes to zero, block is garbage 

and can be freed

� Does not use current heap links
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Reference Counting Problem
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Reference Counting Problem
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When circle is set 

to null, the reference 

counter is 

decremented.

No reference counter 

is zero, though all 

blocks are garbage.
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Reference Counting

� Problem with cycles of garbage

� Problem with performance generally, since 

the overhead of updating reference counters 

is high

� One advantage: naturally incremental, with 

no big pause while collecting
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Garbage Collecting Refinements

� Generational collectors

– Divide block into generations according to age

– Garbage collect in younger generations more 

often (using previous methods)

� Incremental collectors

– Collect garbage a little at a time

– Avoid the uneven performance of ordinary 

mark-and-sweep and copying collectors
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Garbage Collecting Languages

� Some require it: Java, ML

� Some encourage it: Ada

� Some make it difficult: C, C++

– Even for C and C++ it is possible

– There are libraries that replace the usual 

malloc/free with a garbage-collecting 

manager
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Trends

� An old idea whose popularity is increasing

� Good implementations are within a few 

percent of the performance of systems with 

explicit deallocation

� Programmers who like garbage collection 

feel that the development and debugging 

time it saves is worth the runtime it costs
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Conclusion

� Memory management is an important 
hidden player in language systems

� Performance and reliability are critical

� Different techniques are difficult to 
compare, since every run of every program 
makes different memory demands

� An active area of language systems research 
and experimentation
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