
Memory Management

Chapter Fourteen Modern Programming Languages, 2nd ed. 1

Dynamic Memory Allocation

� Lots of things need memory at runtime:

– Activation records

– Objects

– Explicit allocations: new, malloc, etc.

– Implicit allocations: strings, file buffers, arrays
with dynamically varying size, etc.

� Language systems provide an important
hidden player: runtime memory
management

Chapter Fourteen Modern Programming Languages, 2nd ed. 2

Outline

� 14.2 Memory model using Java arrays

� 14.3 Stacks

� 14.4 Heaps

� 14.5 Current heap links

� 14.5 Garbage collection

Chapter Fourteen Modern Programming Languages, 2nd ed. 3

Memory Model

� For now, assume that the OS grants each

running program one or more fixed-size

regions of memory for dynamic allocation

� We will model these regions as Java arrays

– To see examples of memory management code

– And, for practice with Java

Chapter Fourteen Modern Programming Languages, 2nd ed. 4

Declaring An Array

� A Java array declaration:

� Array types are reference types—an array is

really an object, with a little special syntax

� The variable a above is initialized to null

� It can hold a reference to an array of int

values, but does not yet

Chapter Fourteen Modern Programming Languages, 2nd ed. 5

int[] a = null;

Creating An Array

� Use new to create an array object:

� We could have done it with one declaration

statement, like this:

Chapter Fourteen Modern Programming Languages, 2nd ed. 6

int[] a = null;

a = new int[100];

int[] a = new int[100];

Using An Array

� Use a[i] to refer to an element (as lvalue
or rvalue): a is an array reference
expression and i is an int expression

� Use a.length to access length

� Array indexes are 0..(a.length-1)

Chapter Fourteen Modern Programming Languages, 2nd ed. 7

int i = 0;

while (i<a.length) {

a[i] = 5;

i++;

}

Memory Managers In Java

Chapter Fourteen Modern Programming Languages, 2nd ed. 8

public class MemoryManager {

private int[] memory;

/**

* MemoryManager constructor.

* @param initialMemory int[] of memory to manage

*/

public MemoryManager(int[] initialMemory) {

memory = initialMemory;

}

…

}
We will show Java implementations

this way. The initialMemory

array is the memory region provided

by the operating system.

Outline

� 14.2 Memory model using Java arrays

� 14.3 Stacks

� 14.4 Heaps

� 14.5 Current heap links

� 14.5 Garbage collection

Chapter Fourteen Modern Programming Languages, 2nd ed. 9

Stacks Of Activation Records

� For almost all languages, activation records

must be allocated dynamically

� For many, it suffices to allocate on call and

deallocate on return

� This produces a stack of activation records:

push on call, pop on return

� A simple memory management problem

Chapter Fourteen Modern Programming Languages, 2nd ed. 10

A Stack Illustration

Chapter Fourteen Modern Programming Languages, 2nd ed. 11

7:

top: 8

6:

5:

4:

3:

2:

1:

0:

An empty stack of 8

words. The stack will

grow down, from high

addresses to lower

addresses. A reserved

memory location (perhaps

a register) records the

address of the lowest

allocated word.

Chapter Fourteen Modern Programming Languages, 2nd ed. 12

The program calls

m.push(3), which

returns 5: the address of the

first of the 3 words

allocated for an activation

record. Memory

management uses an extra

word to record the previous

value of top.

7:

top: 4

6:

5:

4:

3:

2:

1:

0:

first activation

record

8

Chapter Fourteen Modern Programming Languages, 2nd ed. 13

The program calls

m.push(2), which

returns 2: the address of the

first of the 2 words

allocated for an activation

record. The stack is now

full—there is not room even

for m.push(1).

For m.pop(), just do

top = memory[top]

to return to previous

configuration.

7:

top: 1

6:

5:

4:

3:

2:

1:

0:

first activation

record

8

second

activation record

4

A Java Stack Implementation

Chapter Fourteen Modern Programming Languages, 2nd ed. 14

public class StackManager {

private int[] memory; // the memory we manage

private int top; // index of top stack block

/**

* StackManager constructor.

* @param initialMemory int[] of memory to manage

*/

public StackManager(int[] initialMemory) {

memory = initialMemory;

top = memory.length;

}

Chapter Fourteen Modern Programming Languages, 2nd ed. 15

/**

* Allocate a block and return its address.

* @param requestSize int size of block, > 0

* @return block address

* @throws StackOverflowError if out of stack space

*/

public int push(int requestSize) {

int oldtop = top;

top -= (requestSize+1); // extra word for oldtop

if (top<0) throw new StackOverflowError();

memory[top] = oldtop;

return top+1;

} The throw statement and

exception handling are introduced

in Chapter 17.

Chapter Fourteen Modern Programming Languages, 2nd ed. 16

/**

* Pop the top stack frame. This works only if the

* stack is not empty.

*/

public void pop() {

top = memory[top];

}

}

Outline

� 14.2 Memory model using Java arrays

� 14.3 Stacks

� 14.4 Heaps

� 14.5 Current heap links

� 14.5 Garbage collection

Chapter Fourteen Modern Programming Languages, 2nd ed. 17

The Heap Problem

� Stack order makes implementation easy

� Not always possible: what if allocations and

deallocations can come in any order?

� A heap is a pool of blocks of memory, with

an interface for unordered runtime memory

allocation and deallocation

� There are many mechanisms for this…

Chapter Fourteen Modern Programming Languages, 2nd ed. 18

First Fit

� A linked list of free blocks, initially
containing one big free block

� To allocate:

– Search free list for first adequate block

– If there is extra space in the block, return the
unused portion at the upper end to the free list

– Allocate requested portion (at the lower end)

� To free, just add to the front of the free list

Chapter Fourteen Modern Programming Languages, 2nd ed. 19

Heap Illustration

Chapter Fourteen Modern Programming Languages, 2nd ed. 20

7:

freeStart: 0

6:

5:

4:

3:

2:

1:

0:

-1

10

9:

8:

A heap manager m with a memory

array of 10 words, initially empty.

The link to the head of the free list is

held in freeStart.

Every block, allocated or free, has its

length in its first word.

Free blocks have free-list link in their

second word, or –1 at the end of the

free list.

Chapter Fourteen Modern Programming Languages, 2nd ed. 21

7:

freeStart: 5

6:

5:

4:

3:

2:

1:

0:

-1

5

first allocated

block

5

9:

8:

p1=m.allocate(4);

p1 will be 1—the address of the

first of four allocated words.

An extra word holds the block

length.

Remainder of the big free block was

returned to the free list.

Chapter Fourteen Modern Programming Languages, 2nd ed. 22

p1=m.allocate(4);

p2=m.allocate(2);

p2 will be 6—the address of the

first of two allocated words.

An extra word holds the block

length.

Remainder of the free block was

returned to the free list.

7:

freeStart: 8

6:

5:

4:

3:

2:

1:

0:

second allocated

block

3

first allocated

block

5

9:

8:

-1

2

Chapter Fourteen Modern Programming Languages, 2nd ed. 23

p1=m.allocate(4);

p2=m.allocate(2);

m.deallocate(p1);

Deallocates the first allocated block.

It returns to the head of the free list.

7:

freeStart: 0

6:

5:

4:

3:

2:

1:

0:

second allocated

block

3

5

9:

8:

-1

2

8

Chapter Fourteen Modern Programming Languages, 2nd ed. 24

p1=m.allocate(4);

p2=m.allocate(2);

m.deallocate(p1);

p3=m.allocate(1);
7:

freeStart: 2

6:

5:

4:

3:

2:

1:

0:

second allocated

block

3

2

9:

8:

-1

2

8

3

third allocated

block

p3 will be 1—the address of the

allocated word.

Notice that there were two suitable

blocks. The other one would have

been an exact fit. (Best Fit is

another possible mechanism.)

A Java Heap Implementation

Chapter Fourteen Modern Programming Languages, 2nd ed. 25

public class HeapManager {

static private final int NULL = -1; // null link

public int[] memory; // the memory we manage

private int freeStart; // start of the free list

/**

* HeapManager constructor.

* @param initialMemory int[] of memory to manage

*/

public HeapManager(int[] initialMemory) {

memory = initialMemory;

memory[0] = memory.length; // one big free block

memory[1] = NULL; // free list ends with it

freeStart = 0; // free list starts with it

}

Chapter Fourteen Modern Programming Languages, 2nd ed. 26

/**

* Allocate a block and return its address.

* @param requestSize int size of block, > 0

* @return block address

* @throws OutOfMemoryError if no block big enough

*/

public int allocate(int requestSize) {

int size = requestSize + 1; // size with header

// Do first-fit search: linear search of the free

// list for the first block of sufficient size.

int p = freeStart; // head of free list

int lag = NULL;

while (p!=NULL && memory[p]<size) {

lag = p; // lag is previous p

p = memory[p+1]; // link to next block

}

if (p==NULL) // no block large enough

throw new OutOfMemoryError();

int nextFree = memory[p+1]; // block after p

Chapter Fourteen Modern Programming Languages, 2nd ed. 27

// Now p is the index of a block of sufficient size,

// and lag is the index of p's predecessor in the

// free list, or NULL, and nextFree is the index of

// p's successor in the free list, or NULL.

// If the block has more space than we need, carve

// out what we need from the front and return the

// unused end part to the free list.

int unused = memory[p]-size; // extra space

if (unused>1) { // if more than a header's worth

nextFree = p+size; // index of the unused piece

memory[nextFree] = unused; // fill in size

memory[nextFree+1] = memory[p+1]; // fill in link

memory[p] = size; // reduce p's size accordingly

}

// Link out the block we are allocating and done.

if (lag==NULL) freeStart = nextFree;

else memory[lag+1] = nextFree;

return p+1; // index of useable word (after header)

}

Chapter Fourteen Modern Programming Languages, 2nd ed. 28

/**

* Deallocate an allocated block. This works only if

* the block address is one that was returned by

* allocate and has not yet been deallocated.

* @param address int address of the block

*/

public void deallocate(int address) {

int addr = address-1;

memory[addr+1] = freeStart;

freeStart = addr;

}

}

A Problem

� Consider this sequence:

� Final allocate will fail: we are breaking
up large blocks but never reversing the
process

� Need to coalesce adjacent free blocks

Chapter Fourteen Modern Programming Languages, 2nd ed. 29

p1=m.allocate(4);

p2=m.allocate(4);

m.deallocate(p1);

m.deallocate(p2);

p3=m.allocate(7);

A Solution

� We can implement a smarter deallocate

method:

– Maintain the free list sorted in address order

– When freeing, look at the previous free block

and the next free block

– If adjacent, coalesce

� This is a lot more work than just returning

the block to the head of the free list…

Chapter Fourteen Modern Programming Languages, 2nd ed. 30

Chapter Fourteen Modern Programming Languages, 2nd ed. 31

/**

* Deallocate an allocated block. This works only if

* the block address is one that was returned by

* allocate and has not yet been deallocated.

* @param address int address of the block

*/

public void deallocate(int address) {

int addr = address-1; // real start of the block

// Find the insertion point in the sorted free list

// for this block.

int p = freeStart;

int lag = NULL;

while (p!=NULL && p<addr) {

lag = p;

p = memory[p+1];

}

Chapter Fourteen Modern Programming Languages, 2nd ed. 32

// Now p is the index of the block to come after

// ours in the free list, or NULL, and lag is the

// index of the block to come before ours in the

// free list, or NULL.

// If the one to come after ours is adjacent to it,

// merge it into ours and restore the property

// described above.

if (addr+memory[addr]==p) {

memory[addr] += memory[p]; // add its size to ours

p = memory[p+1]; //

}

Chapter Fourteen Modern Programming Languages, 2nd ed. 33

if (lag==NULL) { // ours will be first free

freeStart = addr;

memory[addr+1] = p;

}

else if (lag+memory[lag]==addr) { // block before is

// adjacent to ours

memory[lag] += memory[addr]; // merge ours into it

memory[lag+1] = p;

}

else { // neither: just a simple insertion

memory[lag+1] = addr;

memory[addr+1] = p;

}

}

Quick Lists

� Small blocks tend to be allocated and
deallocated much more frequently

� A common optimization: keep separate free
lists for popular (small) block sizes

� On these quick lists, blocks are one size

� Delayed coalescing: free blocks on quick
lists are not coalesced right away (but may
have to be coalesced eventually)

Chapter Fourteen Modern Programming Languages, 2nd ed. 34

Fragmentation

� When free regions are separated by

allocated blocks, so that it is not possible to

allocate all of free memory as one block

� More generally: any time a heap manager is

unable to allocate memory even though free

– If it allocated more than requested

– If it does not coalesce adjacent free blocks

– And so on…

Chapter Fourteen Modern Programming Languages, 2nd ed. 35

Chapter Fourteen Modern Programming Languages, 2nd ed. 36

p1=m.allocate(4);

p2=m.allocate(1);

m.deallocate(p1);

p3=m.allocate(5);

The final allocation will fail because

of fragmentation.

7:

freeStart: 0

6:

5:

4:

3:

2:

1:

0:

second allocated

block

2

5

9:

8:

-1

7

3

Other Heap Mechanisms

� An amazing variety

� Three major issues:

– Placement—where to allocate a block

– Splitting—when and how to split large blocks

– Coalescing—when and how to recombine

� Many other refinements

Chapter Fourteen Modern Programming Languages, 2nd ed. 37

Placement

� Where to allocate a block

� Our mechanism: first fit from FIFO free list

� Some mechanisms use a similar linked list

of free blocks: first fit, best fit, next fit, etc.

� Some mechanisms use a more scalable data

structure like a balanced binary tree

Chapter Fourteen Modern Programming Languages, 2nd ed. 38

Splitting

� When and how to split large blocks

� Our mechanism: split to requested size

� Sometimes you get better results with less

splitting—just allocate more than requested

� A common example: rounding up allocation

size to some multiple

Chapter Fourteen Modern Programming Languages, 2nd ed. 39

Coalescing

� When and how to recombine adjacent free

blocks

� We saw several varieties:

– No coalescing

– Eager coalescing

– Delayed coalescing (as with quick lists)

Chapter Fourteen Modern Programming Languages, 2nd ed. 40

Outline

� 14.2 Memory model using Java arrays

� 14.3 Stacks

� 14.4 Heaps

� 14.5 Current heap links

� 14.5 Garbage collection

Chapter Fourteen Modern Programming Languages, 2nd ed. 41

Current Heap Links

� So far, the running program is a black box:
a source of allocations and deallocations

� What does the running program do with
addresses allocated to it?

� Some systems track current heap links

� A current heap link is a memory location
where a value is stored that the running
program will use as a heap address

Chapter Fourteen Modern Programming Languages, 2nd ed. 42

Tracing Current Heap Links

Chapter Fourteen Modern Programming Languages, 2nd ed. 43

 a:

b: 2

c: 1

(activation record

for main)

free

the stack

start:

(an IntList)

free

the heap

head: 2

tail: null

(a ConsCell)

head: 1

tail:

(a ConsCell)

free

free

IntList a =

new IntList(null);

int b = 2;

int c = 1;

a = a.cons(b);

a = a.cons(c);

Where are the current

heap links in this

picture?

To Find Current Heap Links

� Start with the root set: memory locations
outside of the heap with links into the heap

– Active activation records (if on the stack)

– Static variables, etc.

� For each memory location in the set, look at
the allocated block it points to, and add all
the memory locations in that block

� Repeat until no new locations are found

Chapter Fourteen Modern Programming Languages, 2nd ed. 44

Discarding Impossible Links

� Depending on the language and
implementation, we may be able to discard
some locations from the set:

– If they do not point into allocated heap blocks

– If they do not point to allocated heap blocks
(Java, but not C)

– If their dynamic type rules out use as heap links

– If their static type rules out use as heap links
(Java, but not C)

Chapter Fourteen Modern Programming Languages, 2nd ed. 45

Errors In Current Heap Links

� Exclusion errors: a memory location that

actually is a current heap link is left out

� Unused inclusion errors: a memory

location is included, but the program never

actually uses the value stored there

� Used inclusion errors: a memory location

is included, but the program uses the value

stored there as something other than a heap

address—as an integer, for example

Chapter Fourteen Modern Programming Languages, 2nd ed. 46

Errors Are Unavoidable

� For heap manager purposes, exclusion
errors are unacceptable

� We must include a location if it might be
used as a heap link

� This makes unused inclusion errors
unavoidable

� Depending on the language, used inclusions
may also be unavoidable

Chapter Fourteen Modern Programming Languages, 2nd ed. 47

Used Inclusion Errors In C

� Static type and runtime value may be of no

use in telling how a value will be used

� Variable x may be used either as a pointer

or as an array of four characters

Chapter Fourteen Modern Programming Languages, 2nd ed. 48

union {

char *p;

char tag[4];

} x;

Heap Compaction

� One application for current heap links

� Manager can move allocated blocks:

– Copy the block to a new location

– Update all links to (or into) that block

� So it can compact the heap, moving all

allocated blocks to one end, leaving one big

free block and no fragmentation

Chapter Fourteen Modern Programming Languages, 2nd ed. 49

Outline

� 14.2 Memory model using Java arrays

� 14.3 Stacks

� 14.4 Heaps

� 14.5 Current heap links

� 14.5 Garbage collection

Chapter Fourteen Modern Programming Languages, 2nd ed. 50

Some Common Pointer Errors

Chapter Fourteen Modern Programming Languages, 2nd ed. 51

type

p: ^Integer;

begin

new(p);

p^ := 21;

dispose(p);

p^ := p^ + 1

end

procedure Leak;

type

p: ^Integer;

begin

new(p)

end;

Dangling pointer: this Pascal fragment

uses a pointer after the block it points

to has been deallocated

Memory leak: this Pascal procedure

allocates a block but forgets to

deallocate it

Garbage Collection

� Since so many errors are caused by

improper deallocation…

� …and since it is a burden on the

programmer to have to worry about it…

� …why not have the language system

reclaim blocks automatically?

Chapter Fourteen Modern Programming Languages, 2nd ed. 52

Three Major Approaches

� Mark and sweep

� Copying

� Reference counting

Chapter Fourteen Modern Programming Languages, 2nd ed. 53

Mark And Sweep

� A mark-and-sweep collector uses current

heap links in a two-stage process:

– Mark: find the live heap links and mark all the

heap blocks linked to by them

– Sweep: make a pass over the heap and return

unmarked blocks to the free pool

� Blocks are not moved, so both kinds of

inclusion errors are tolerated

Chapter Fourteen Modern Programming Languages, 2nd ed. 54

Copying Collection

� A copying collector divides memory in half,
and uses only one half at a time

� When one half becomes full, find live heap
links, and copy live blocks to the other half

� Compacts as it goes, so fragmentation is
eliminated

� Moves blocks: cannot tolerate used
inclusion errors

Chapter Fourteen Modern Programming Languages, 2nd ed. 55

Reference Counting

� Each block has a counter of heap links to it

� Incremented when a heap link is copied,

decremented when a heap link is discarded

� When counter goes to zero, block is garbage

and can be freed

� Does not use current heap links

Chapter Fourteen Modern Programming Languages, 2nd ed. 56

Reference Counting Problem

Chapter Fourteen Modern Programming Languages, 2nd ed. 57

 circle:

(activation record)

free

the stack
free

the heap

link:

link:

free

free

link:

2

1

1

One problem with

reference counting: it

misses cycles of

garbage.

Here, a circularly

linked list is pointed

to by circle.

Reference Counting Problem

Chapter Fourteen Modern Programming Languages, 2nd ed. 58

When circle is set

to null, the reference

counter is

decremented.

No reference counter

is zero, though all

blocks are garbage.

 circle: null

(activation record)

free

the stack
free

the heap

link:

link:

free

free

link:

1

1

1

Reference Counting

� Problem with cycles of garbage

� Problem with performance generally, since

the overhead of updating reference counters

is high

� One advantage: naturally incremental, with

no big pause while collecting

Chapter Fourteen Modern Programming Languages, 2nd ed. 59

Garbage Collecting Refinements

� Generational collectors

– Divide block into generations according to age

– Garbage collect in younger generations more

often (using previous methods)

� Incremental collectors

– Collect garbage a little at a time

– Avoid the uneven performance of ordinary

mark-and-sweep and copying collectors

Chapter Fourteen Modern Programming Languages, 2nd ed. 60

Garbage Collecting Languages

� Some require it: Java, ML

� Some encourage it: Ada

� Some make it difficult: C, C++

– Even for C and C++ it is possible

– There are libraries that replace the usual

malloc/free with a garbage-collecting

manager

Chapter Fourteen Modern Programming Languages, 2nd ed. 61

Trends

� An old idea whose popularity is increasing

� Good implementations are within a few

percent of the performance of systems with

explicit deallocation

� Programmers who like garbage collection

feel that the development and debugging

time it saves is worth the runtime it costs

Chapter Fourteen Modern Programming Languages, 2nd ed. 62

Conclusion

� Memory management is an important
hidden player in language systems

� Performance and reliability are critical

� Different techniques are difficult to
compare, since every run of every program
makes different memory demands

� An active area of language systems research
and experimentation

Chapter Fourteen Modern Programming Languages, 2nd ed. 63

