
A First Look At Java

Chapter Thirteen Modern Programming Languages, 2nd ed. 1

Outline

� 13.2 Thinking about objects

� 13.3 Simple expressions and statements

� 13.4 Class definitions

� 13.5 About references and pointers

� 13.6 Getting started with a Java language

system

Chapter Thirteen Modern Programming Languages, 2nd ed. 2

Example

� Colored points on the screen

� What data goes into making one?

– Coordinates

– Color

� What should a point be able to do?

– Move itself

– Report its position

Chapter Thirteen Modern Programming Languages, 2nd ed. 3

Chapter Thirteen Modern Programming Languages, 2nd ed. 4

My x: 5

My y: 20

My color: black

Things I can do:

 move

 report x

 report y

My x: 20

My y: 10

My color: dark g rey

Things I can do:

 move

 report x

 report y

My x: 17

My y: 25

My color: light g rey

Things I can do:

 move

 report x

 report y

Java Terminology

� Each point is an object

� Each includes three fields

� Each has three methods

� Each is an instance of the

same class

Chapter Thirteen Modern Programming Languages, 2nd ed. 5

My x: 10

My y: 50

My color: black

Things I can do:

 move

 report x

 report y

Object-Oriented Style

� Solve problems using objects: little bundles
of data that know how to do things to
themselves

� Not the computer knows how to move the
point, but rather the point knows how to
move itself

� Object-oriented languages make this way of
thinking and programming easier

Chapter Thirteen Modern Programming Languages, 2nd ed. 6

Java Class Definitions: A Peek

Chapter Thirteen Modern Programming Languages, 2nd ed. 7

public class Point {
private int x,y;
private Color myColor;

public int currentX() {
return x;

}

public int currentY() {
return y;

}

public void move(int newX, int newY) {
x = newX;
y = newY;

}
}

field definitions

method definitions

Outline

� 13.2 Thinking about objects

� 13.3 Simple expressions and statements

� 13.4 Class definitions

� 13.5 About references and pointers

� 13.6 Getting started with a Java language

system

Chapter Thirteen Modern Programming Languages, 2nd ed. 8

Primitive Types We Will Use

� int: -231..231-1, written the usual way

� char: 0..216-1, written 'a', '\n', etc.,

using the Unicode character set

� double: IEEE 64-bit standard, written in

decimal (1.2) or scientific (1.2e-5, 1e3)

� boolean: true and false

� Oddities: void and null

Chapter Thirteen Modern Programming Languages, 2nd ed. 9

Primitive Types We Won’t Use

� byte: -27..27-1

� short: -215..215-1

� long: -263..263-1, written with trailing L

� float: IEEE 32-bit standard, written with

trailing F (1.2e-5, 1e3)

Chapter Thirteen Modern Programming Languages, 2nd ed. 10

Constructed Types

� Constructed types are all reference types:

they are references to objects

– Any class name, like Point

– Any interface name (Chapter 15)

– Any array type, like Point[] or int[]
(Chapter 14)

Chapter Thirteen Modern Programming Languages, 2nd ed. 11

Strings

� Predefined but not primitive: a class
String

� A string of characters enclosed in double-

quotes works like a string constant

� But it is actually an instance of the String
class, and object containing the given string

of characters

Chapter Thirteen Modern Programming Languages, 2nd ed. 12

A String Object

Chapter Thirteen Modern Programming Languages, 2nd ed. 13

My data: Hello there

My length: 11

Things I can do:

 report my length

 report my ith char

 make an uppercase

 version of

 myself

 etc.

"Hello there"

Numeric Operators

� int: +, -, *, /, %, unary –

� double: +, -, *, /, unary –

Chapter Thirteen Modern Programming Languages, 2nd ed. 14

Java Expression Value

1+2*3 7

15/7 2

15%7 1

-(5*5) -25

Java Expression Value

13.0*2.0 26.0
15.0/7.0 2.142857142857143

Concatenation

� The + operator has special overloading and

coercion behavior for the class String

Chapter Thirteen Modern Programming Languages, 2nd ed. 15

Java Expression Value

"123"+"456" "123456"

"The answer is " + 4 "The answer is 4"

"" + (1.0/3.0) "0.3333333333333333"

1+"2" "12"

"1"+2+3 "123"

1+2+"3" "33"

Comparisons

� The usual comparison operators <, <=, >=,

and >, on numeric types

� Equality == and inequality != on any type,

including double (unlike ML)

Chapter Thirteen Modern Programming Languages, 2nd ed. 16

Java Expression Value

1<=2 true
1==2 false

true!=false true

Boolean Operators

� && and ||, short-circuiting, like ML’s

andalso and orelse

� !, like ML’s not

� a?b:c, like ML’s if a then b else c

Chapter Thirteen Modern Programming Languages, 2nd ed. 17

Java Expression Value

1<=2 && 2<=3 true

1<2 || 1>2 true

1<2 ? 3 : 4 3

Operators With Side Effects

� An operator has a side effect if it changes

something in the program environment, like

the value of a variable or array element

� In ML, and in Java so far, we have seen

only pure operators—no side effects

� Now: Java operators with side effects

Chapter Thirteen Modern Programming Languages, 2nd ed. 18

Assignment

� a=b: changes a to make it equal to b

� Assignment is an important part of what

makes a language imperative

Chapter Thirteen Modern Programming Languages, 2nd ed. 19

Rvalues and Lvalues

� Why does a=1 make sense, but not 1=a?

� Expressions on the right must have a value:

a, 1, a+1, f() (unless void), etc.

� Expressions on the left must have memory

locations: a or d[2], but not 1 or a+1

� These two attributes of an expression are

sometimes called the rvalue and the lvalue

Chapter Thirteen Modern Programming Languages, 2nd ed. 20

Rvalues and Lvalues

� In most languages, the context decides

whether the language will use the rvalue or

the lvalue of an expression

� A few exceptions:

– Bliss: x := .y

– ML: x := !y (both of type 'a ref)

Chapter Thirteen Modern Programming Languages, 2nd ed. 21

More Side Effects

� Compound assignments

� Increment and decrement

Chapter Thirteen Modern Programming Languages, 2nd ed. 22

Long Java Expression Short Java Expression

a=a+b a+=b

a=a-b a-=b

a=a*b a*=b

Long Java Expression Short Java Expression

a=a+1 a++

a=a-1 a--

Values And Side Effects

� Side-effecting expressions have both a
value and a side effect

� Value of x=y is the value of y; side-effect
is to change x to have that value

Chapter Thirteen Modern Programming Languages, 2nd ed. 23

Java Expression Value Side Effect

a+(x=b)+c the sum of a, b and c changes the value of x,

making it equal to b

(a=d)+(b=d)+(c=d) three times the value of d changes the values of

a, b and c, making

them all equal to d

a=b=c the value of c changes the values of a
and b, making them

equal to c

Pre and Post

� Values from increment and decrement

depend on placement

Chapter Thirteen Modern Programming Languages, 2nd ed. 24

Java Expression Value Side Effect

a++ the old value of a adds one to a

++a the new value of a adds one to a

a-- the old value of a subtracts one from a

--a the new value of a subtracts one from a

Instance Method Calls

Chapter Thirteen Modern Programming Languages, 2nd ed. 25

Java Expression Value

s.length() the length of the String s

s.equals(r) true if s and r are equal, false
otherwise

r.equals(s) same

r.toUpperCase() A String object that is an

uppercase version of the String r

r.charAt(3) the char value in position 3 in the

String r (that is, the fourth

character)

r.toUpperCase().charAt(3) the char value in position 3 in the

uppercase version of the String r

Class Method Calls
� Class methods define things the class itself

knows how to do—not objects of the class

� The class just serves as a labeled namespace

� Like ordinary function calls in non-object-
oriented languages

Chapter Thirteen Modern Programming Languages, 2nd ed. 26

Java Expression Value

String.valueOf(1==2) "false"

String.valueOf(5*5) "25"

String.valueOf(1.0/3.0) "0.3333333333333333"

Method Call Syntax

� Three forms:

– Normal instance method call:

– Normal class method call

– Either kind, from within another method of the

same class

Chapter Thirteen Modern Programming Languages, 2nd ed. 27

<method-call> ::= <reference-expression>.<method-name>
(<parameter-list>)

<method-call> ::= <class-name>.<method-name>
(<parameter-list>)

<method-call> ::= <method-name>(<parameter-list>)

Object Creation Expressions

� To create a new object that is an instance of

a given class

� Parameters are passed to a constructor—

like a special instance method of the class

Chapter Thirteen Modern Programming Languages, 2nd ed. 28

<creation-expression> ::= new <class-name>
(<parameter-list>)

Java Expression Value

new String() a new String of length zero

new String(s) a new String that contains a

copy of String s

new String(chars) a new String that contains the

char values from the array

No Object Destruction

� Objects are created with new

� Objects are never explicitly destroyed or

deallocated

� Garbage collection (chapter 14)

Chapter Thirteen Modern Programming Languages, 2nd ed. 29

General Operator Info
� All left-associative, except for assignments

� 15 precedence levels

– Some obvious: * higher than +
– Others less so: < higher than !=

– Use parentheses to make code readable

� Many coercions

– null to any reference type

– Any value to String for concatenation

– One reference type to another sometimes
(Chapter 15)

Chapter Thirteen Modern Programming Languages, 2nd ed. 30

Numeric Coercions

� Numeric coercions (for our types):

– char to int before any operator is applied (except
string concatenation)

– int to double for binary ops mixing them

Chapter Thirteen Modern Programming Languages, 2nd ed. 31

Java expression value

'a'+'b' 195

1/3 0

1/3.0 0.3333333333333333

1/2+0.0 0.0

1/(2+0.0) 0.5

Boxing and Unboxing Coercions

� Preview: Java supports coercions between

– most of the primitive types (including int,

char, double, and boolean), and

– corresponding predefined reference types

(Integer, Character, Double, and

Boolean)

� More about these coercions in Chapter 15

Chapter Thirteen Modern Programming Languages, 2nd ed. 32

Statements

� That’s it for expressions

� Next, statements:
� Expression statements

� Compound statements

� Declaration statements

� The if statement

� The while statement

� The return statement

� Statements are executed for side effects: an
important part of imperative languages

Chapter Thirteen Modern Programming Languages, 2nd ed. 33

Expression Statements

� Any expression followed by a semicolon

� Value of the expression, if any, is discarded

� Java does not allow the expression to be
something without side effects, like x==y

Chapter Thirteen Modern Programming Languages, 2nd ed. 34

<expression-statement> ::= <expression> ;

Java Statement Equivalent Command in English

speed = 0; Store a 0 in speed.

a++; Increase the value of a by 1.

inTheRed = cost > balance; If cost is greater than

balance, set inTheRed to

true, otherwise to false.

Compound Statements

� Do statements

in order

� Also serves as

a block for

scoping

Chapter Thirteen Modern Programming Languages, 2nd ed. 35

<compound-statement> ::= { <statement-list> }
< statement-list> ::= <statement> <statement-list> | <empty>

Java Statement Equivalent Command

in English

{
a = 0;
b = 1;

}

Store a zero in a,

then store a 1 in b.

{
a++;
b++;
c++;

}

Increment a, then

increment b, then

increment c.

{ } Do nothing.

Declaration Statements

� Block-scoped definition of a variable

Chapter Thirteen Modern Programming Languages, 2nd ed. 36

<declaration-statement> ::= <declaration> ;
<declaration> ::= <type> <variable-name>

| <type> <variable-name> = <expression>

boolean done = false; Define a new variable named done
of type boolean, and initialize it

to false.

Point p; Define a new variable named p of

type Point. (Do not initialize it.)

{
int temp = a;
a = b;
b = temp;

}

Swap the values of the integer
variables a and b.

The if Statement

� Dangling else resolved in the usual way

Chapter Thirteen Modern Programming Languages, 2nd ed. 37

<if-statement> ::= if (<expression>) <statement>
| if (<expression>) <statement> else <statement>

Java Statement Equivalent Command in English

if (i > 0) i--; Decrement i, but only if it is

greater than zero.

if (a < b) b -= a;
else a -= b;

Subtract the smaller of a or b from

the larger.

if (reset) {
a = b = 0;
reset = false;

}

If reset is true, zero out a and

b and then set reset to false.

The while Statement

� Evaluate expression; if false do nothing

� Otherwise execute statement, then repeat

� Iteration is another hallmark of imperative
languages

� (Note that this iteration would not make
sense without side effects, since the value of
the expression must change)

� Java also has do and for loops

Chapter Thirteen Modern Programming Languages, 2nd ed. 38

<while-statement> ::= while (<expression>) <statement>

Chapter Thirteen Modern Programming Languages, 2nd ed. 39

Java Statement Equivalent Command in English

while (a<100) a+=5; As long as a is less than 100, keep

adding 5 to a.

while (a!=b)
if (a < b) b -= a;
else a -= b;

Subtract the smaller of a or b from

the larger, over and over until they

are equal. (This is Euclid's

algorithm for finding the GCD of

two positive integers.)

while (time>0) {
simulate();
time--;

}

As long as time is greater than

zero, call the simulate method

of the current class and then
decrement time.

while (true) work(); Call the work method of the

current class over and over,

forever.

The return Statement

� Methods that return a value must execute a

return statement of the first form

� Methods that do not return a value (methods

with return type void) may execute a

return statement of the second form

Chapter Thirteen Modern Programming Languages, 2nd ed. 40

<return-statement> ::= return <expression>;
| return;

Outline

� 13.2 Thinking about objects

� 13.3 Simple expressions and statements

� 13.4 Class definitions

� 13.5 About references and pointers

� 13.6 Getting started with a Java language

system

Chapter Thirteen Modern Programming Languages, 2nd ed. 41

Class Definitions

� We have enough expressions and statements

� Now we will use them to make a definition

of a class

� Example: ConsCell, a class for building

linked lists of integers like ML’s

int list type

Chapter Thirteen Modern Programming Languages, 2nd ed. 42

Chapter Thirteen Modern Programming Languages, 2nd ed. 43

/**
* A ConsCell is an element in a linked list of
* ints.
*/
public class ConsCell {
private int head; // the first item in the list
private ConsCell tail; // rest of the list, or null

/**
* Construct a new ConsCell given its head and tail.
* @param h the int contents of this cell
* @param t the next ConsCell in the list, or null
*/
public ConsCell(int h, ConsCell t) {
head = h;
tail = t;

}
Note comment forms, public and private,

field definitions.

Note constructor definition: access specifier, class

name, parameter list, compound statement

Chapter Thirteen Modern Programming Languages, 2nd ed. 44

/**
* Accessor for the head of this ConsCell.
* @return the int contents of this cell
*/
public int getHead() {
return head;

}

/**
* Accessor for the tail of this ConsCell.
* @return the next ConsCell in the list, or null
*/
public ConsCell getTail() {
return tail;

}

Note method definitions: access specifier, return

type, method name, parameter list, compound

statement

Chapter Thirteen Modern Programming Languages, 2nd ed. 45

/**
* Mutator for the tail of this ConsCell.
* @param t the new tail for this cell
*/
public void setTail(ConsCell t) {
tail = t;

}
}

Note: this mutator gives a way to ask a
ConsCell to change its own tail link. (Not like

anything we did with lists in ML!) This method is

useful for some of the exercises at the end of the

chapter.

Using ConsCell

� Like consing up a list in ML

� But a Java list should be object-oriented:
where ML applies :: to a list, our Java list
should be able to cons onto itself

� And where ML applies length to a list,
Java lists should compute their own length

� So we can’t use null for the empty list

Chapter Thirteen Modern Programming Languages, 2nd ed. 46

val a = []; ConsCell a = null;
val b = 2::a; ConsCell b = new ConsCell(2,a);
val c = 1::b; ConsCell c = new ConsCell(1,b);

Chapter Thirteen Modern Programming Languages, 2nd ed. 47

/**
* An IntList is a list of ints.
*/
public class IntList {
private ConsCell start; // list head, or null

/**
* Construct a new IntList given its first ConsCell.
* @param s the first ConsCell in the list, or null
*/
public IntList(ConsCell s) {
start = s;

}
An IntList contains a reference to a list of

ConsCell objects, which will be null if the list

is empty

Chapter Thirteen Modern Programming Languages, 2nd ed. 48

/**
* Cons the given element h onto us and return the
* resulting IntList.
* @param h the head int for the new list
* @return the IntList with head h, and us as tail
*/
public IntList cons (int h) {
return new IntList(new ConsCell(h,start));

}

An IntList knows how to cons things onto

itself. It does not change, but it returns a new
IntList with the new element at the front.

Chapter Thirteen Modern Programming Languages, 2nd ed. 49

/**
* Get our length.
* @return our int length
*/
public int length() {
int len = 0;
ConsCell cell = start;
while (cell != null) { // while not at end of list
len++;
cell = cell.getTail();

}
return len;

}
}

An IntList knows how to compute its length

Using IntList

Chapter Thirteen Modern Programming Languages, 2nd ed. 50

ML:

val a = nil;
val b = 2::a;
val c = 1::b;
val x = (length a) + (length b) + (length c);

Java:

IntList a = new IntList(null);
IntList b = a.cons(2);
IntList c = b.cons(1);
int x = a.length() + b.length() + c.length();

Outline

� 13.2 Thinking about objects

� 13.3 Simple expressions and statements

� 13.4 Class definitions

� 13.5 About references and pointers

� 13.6 Getting started with a Java language

system

Chapter Thirteen Modern Programming Languages, 2nd ed. 51

What Is A Reference?
� A reference is a value that uniquely

identifies a particular object

� What gets passed to the IntList
constructor is not an object—it is a
reference to an object

� What gets stored in start is not a copy of
an object—it is a reference to an object, and
no copy of the object is made

Chapter Thirteen Modern Programming Languages, 2nd ed. 52

public IntList(ConsCell s) {
start = s;

}

Pointers

� If you have been using a language like C or

C++, there is an easy way to think about

references: a reference is a pointer

� That is, a reference is the address of the

object in memory

� Java language systems can implement

references this way

Chapter Thirteen Modern Programming Languages, 2nd ed. 53

But I Thought…

� It is sometimes said that Java is like C++
without pointers

� True from a certain point of view

� C and C++ expose the address nature of
pointers (e.g. in pointer arithmetic)

� Java programs can’t tell how references are
implemented: they are just values that
uniquely identify a particular object

Chapter Thirteen Modern Programming Languages, 2nd ed. 54

C++ Comparison

� A C++ variable can hold an object or a

pointer to an object. There are two selectors:

– a->x selects method or field x when a is a

pointer to an object

– a.x selects x when a is an object

� A Java variable cannot hold an object, only a

reference to an object. Only one selector:

– a.x selects x when a is a reference to an object

Chapter Thirteen Modern Programming Languages, 2nd ed. 55

Comparison

Chapter Thirteen Modern Programming Languages, 2nd ed. 56

C++ Equivalent Java

IntList* p;
p = new IntList(0);
p->length();
p = q;

IntList p;
p = new IntList(null);
p.length();
p = q;

IntList p(0);
p.length();
p = q;

No equivalent.

Outline

� 13.2 Thinking about objects

� 13.3 Simple expressions and statements

� 13.4 Class definitions

� 13.5 About references and pointers

� 13.6 Getting started with a Java language

system

Chapter Thirteen Modern Programming Languages, 2nd ed. 57

Text Output

� A predefined object: System.out

� Two methods: print(x) to print x, and

println(x) to print x and start a new

line

� Overloaded for all parameter types

Chapter Thirteen Modern Programming Languages, 2nd ed. 58

System.out.println("Hello there");
System.out.print(1.2);

Printing An IntList

Chapter Thirteen Modern Programming Languages, 2nd ed. 59

/**
* Print ourself to System.out.
*/
public void print() {
System.out.print("[");
ConsCell a = start;
while (a != null) {
System.out.print(a.getHead());
a = a.getTail();
if (a != null) System.out.print(",");

}
System.out.println("]");

}
Added to the IntList class definition, this

method gives an IntList the ability to print

itself out

The main Method

� A class can have a main method like this:

� This will be used as the starting point when

the class is run as an application

� Keyword static makes this a class

method; use sparingly!

Chapter Thirteen Modern Programming Languages, 2nd ed. 60

public static void main(String[] args) {
…

}

A Driver Class

Chapter Thirteen Modern Programming Languages, 2nd ed. 61

public class Driver {
public static void main(String[] args) {
IntList a = new IntList(null);
IntList b = a.cons(2);
IntList c = b.cons(1);
int x = a.length() + b.length() + c.length();
a.print();
b.print();
c.print();
System.out.println(x);

}
}

Compiling The Program

� Three classes to compile, in three files:

– ConsCell.java, IntList.java, and

Driver.java

� (File name = class name plus .java—

watch capitalization!)

� Compile with the command javac

– They can be done one at a time

– Or, javac Driver.java gets them all

Chapter Thirteen Modern Programming Languages, 2nd ed. 62

Running The Program

� Compiler produces .class files

� Use the Java launcher (java command) to

run the main method in a .class file

Chapter Thirteen Modern Programming Languages, 2nd ed. 63

C:\demo>java Driver
[]
[2]
[1,2]
3

