
A Fourth Look At ML

Chapter Eleven Modern Programming Languages, 2nd ed. 1

Type Definitions

 Predefined, but not primitive in ML:

 Type constructor for lists:

 Defined for ML in ML

Chapter Eleven Modern Programming Languages, 2nd ed. 2

datatype bool = true | false;

datatype 'element list = nil |
:: of 'element * 'element list

Outline

 Enumerations
 Data constructors with parameters
 Type constructors with parameters
 Recursively defined type constructors
 Farewell to ML

Chapter Eleven Modern Programming Languages, 2nd ed. 3

Defining Your Own Types

 New types can be defined using the
keyword datatype

 These declarations define both:
– type constructors for making new (possibly

polymorphic) types
– data constructors for making values of those

new types

Chapter Eleven Modern Programming Languages, 2nd ed. 4

Example

 day is the new type constructor and Mon,
Tue, etc. are the new data constructors

 Why “constructors”? In a moment we will
see how both can have parameters…

Chapter Eleven Modern Programming Languages, 2nd ed. 5

- datatype day = Mon | Tue | Wed | Thu | Fri | Sat | Sun;
datatype day = Fri | Mon | Sat | Sun | Thu | Tue | Wed
- fun isWeekDay x = not (x = Sat orelse x = Sun);
val isWeekDay = fn : day -> bool
- isWeekDay Mon;
val it = true : bool
- isWeekDay Sat;
val it = false : bool

No Parameters

 The type constructor day takes no
parameters: it is not polymorphic, there is
only one day type

 The data constructors Mon, Tue, etc. take
no parameters: they are constant values of
the day type

 Capitalize the names of data constructors

Chapter Eleven Modern Programming Languages, 2nd ed. 6

- datatype day = Mon | Tue | Wed | Thu | Fri | Sat | Sun;
datatype day = Fri | Mon | Sat | Sun | Thu | Tue | Wed

Strict Typing

 ML is strict about these new types, just as
you would expect

 Unlike C enum, no implementation details
are exposed to the programmer

Chapter Eleven Modern Programming Languages, 2nd ed. 7

- datatype flip = Heads | Tails;
datatype flip = Heads | Tails
- fun isHeads x = (x = Heads);
val isHeads = fn : flip -> bool
- isHeads Tails;
val it = false : bool
- isHeads Mon;
Error: operator and operand don't agree [tycon mismatch]
operator domain: flip
operand: day

Data Constructors In Patterns

 You can use the data constructors in
patterns

 In this simple case, they are like constants
 But we will see more general cases next

Chapter Eleven Modern Programming Languages, 2nd ed. 8

fun isWeekDay Sat = false
| isWeekDay Sun = false
| isWeekDay _ = true;

Outline

 Enumerations
 Data constructors with parameters
 Type constructors with parameters
 Recursively defined type constructors
 Farewell to ML

Chapter Eleven Modern Programming Languages, 2nd ed. 9

Wrappers
 You can add a parameter of any type to a data

constructor, using the keyword of:
datatype exint = Value of int | PlusInf | MinusInf;

 In effect, such a constructor is a wrapper that
contains a data item of the given type

Chapter Eleven Modern Programming Languages, 2nd ed. 10

PlusInf
Value

36

MinusInf Value
26

Value
38

Some things
of type exint:

 Value is a data constructor that takes a
parameter: the value of the int to store

 It looks like a function that takes an int
and returns an exint containing that int

Chapter Eleven Modern Programming Languages, 2nd ed. 11

- datatype exint = Value of int | PlusInf | MinusInf;
datatype exint = MinusInf | PlusInf | Value of int
- PlusInf;
val it = PlusInf : exint
- MinusInf;
val it = MinusInf : exint
- Value;
val it = fn : int -> exint
- Value 3;
val it = Value 3 : exint

A Value Is Not An int

 Value 5 is an exint
 It is not an int, though it contains one
 How can we get the int out again?
 By pattern matching…

Chapter Eleven Modern Programming Languages, 2nd ed. 12

- val x = Value 5;
val x = Value 5 : exint
- x+x;
Error: overloaded variable not defined at type
symbol: +
type: exint

Patterns With Data Constructors

 To recover a data constructor’s parameters,
use pattern matching

 So Value is no ordinary function: ordinary
functions can't be pattern-matched this way

 Note that this example only works because
x actually is a Value here

Chapter Eleven Modern Programming Languages, 2nd ed. 13

- val (Value y) = x;
val y = 5 : int

An Exhaustive Pattern

 An exint can be a PlusInf, a
MinusInf, or a Value

 Unlike the previous example, this one says
what to do for all possible values of x

Chapter Eleven Modern Programming Languages, 2nd ed. 14

- val s = case x of
= PlusInf => "infinity" |
= MinusInf => "-infinity" |
= Value y => Int.toString y;
val s = "5" : string

Pattern-Matching Function

 Pattern-matching function definitions are
especially important when working with
your own datatypes

Chapter Eleven Modern Programming Languages, 2nd ed. 15

- fun square PlusInf = PlusInf
= | square MinusInf = PlusInf
= | square (Value x) = Value (x*x);
val square = fn : exint -> exint
- square MinusInf;
val it = PlusInf : exint
- square (Value 3);
val it = Value 9 : exint

Exception Handling (A Peek)

 Patterns are also used in ML for exception
handling, as in this example

 We’ll see it in Java, but skip it in ML
Chapter Eleven Modern Programming Languages, 2nd ed. 16

- fun square PlusInf = PlusInf
= | square MinusInf = PlusInf
= | square (Value x) = Value (x*x)
= handle Overflow => PlusInf;
val square = fn : exint -> exint
- square (Value 10000);
val it = Value 100000000 : exint
- square (Value 100000);
val it = PlusInf : exint

Outline

 Enumerations
 Data constructors with parameters
 Type constructors with parameters
 Recursively defined type constructors
 Farewell to ML

Chapter Eleven Modern Programming Languages, 2nd ed. 17

Type Constructors With
Parameters

 Type constructors can also use parameters:
datatype 'a option = NONE | SOME of 'a;

 The parameters of a type constructor are type
variables, which are used in the data constructors

 The result: a new polymorphic type

Chapter Eleven Modern Programming Languages, 2nd ed. 18

NONE

SOME
"Hello"

Values of type
string option

SOME
"world"

NONE

SOME
1.5

Values of type
real option

SOME
123.4

Parameter Before Name

 Type constuctor parameter comes before the
type constructor name:
datatype 'a option = NONE | SOME of 'a;

 We have types 'a option and
int option, just like 'a list and
int list

Chapter Eleven Modern Programming Languages, 2nd ed. 19

- SOME 4;
val it = SOME 4 : int option
- SOME 1.2;
val it = SOME 1.2 : real option
- SOME "pig";
val it = SOME "pig" : string option

Uses For option
 Predefined type constructor in ML
 Used by predefined functions (or your own)

when the result is not always defined

Chapter Eleven Modern Programming Languages, 2nd ed. 20

- fun optdiv a b =
= if b = 0 then NONE else SOME (a div b);
val optdiv = fn : int -> int -> int option
- optdiv 7 2;
val it = SOME 3 : int option
- optdiv 7 0;
val it = NONE : int option

Longer Example: bunch

 An 'x bunch is either a thing of type 'x, or a
list of things of type 'x

 As usual, ML infers types:

Chapter Eleven Modern Programming Languages, 2nd ed. 21

datatype 'x bunch =
One of 'x |
Group of 'x list;

- One 1.0;
val it = One 1.0 : real bunch
- Group [true,false];
val it = Group [true,false] : bool bunch

Example: Polymorphism

 ML can infer bunch types, but does not
always have to resolve them, just as with
list types

Chapter Eleven Modern Programming Languages, 2nd ed. 22

- fun size (One _) = 1
= | size (Group x) = length x;
val size = fn : 'a bunch -> int
- size (One 1.0);
val it = 1 : int
- size (Group [true,false]);
val it = 2 : int

Example: No Polymorphism

 We applied the + operator (through foldr)
to the list elements

 So ML knows the parameter type must be
int bunch

Chapter Eleven Modern Programming Languages, 2nd ed. 23

- fun sum (One x) = x
= | sum (Group xlist) = foldr op + 0 xlist;
val sum = fn : int bunch -> int
- sum (One 5);
val it = 5 : int
- sum (Group [1,2,3]);
val it = 6 : int

Outline

 Enumerations
 Data constructors with parameters
 Type constructors with parameters
 Recursively defined type constructors
 Farewell to ML

Chapter Eleven Modern Programming Languages, 2nd ed. 24

Recursively Defined Type
Constructors

 The type constructor being defined may be
used in its own data constructors:
datatype intlist =
INTNIL |
INTCONS of int * intlist;

Chapter Eleven Modern Programming Languages, 2nd ed. 25

Some values of
type intlist:

INTNIL

INTCONS

the empty list

INTNIL 1

the list [1]

INTCONS
INTNIL 2

INTCONS

1

the list [1,2]

Constructing Those Values

Chapter Eleven Modern Programming Languages, 2nd ed. 26

- INTNIL;
val it = INTNIL : intlist
- INTCONS (1,INTNIL);
val it = INTCONS (1,INTNIL) : intlist
- INTCONS (1,INTCONS(2,INTNIL));
val it = INTCONS (1,INTCONS (2,INTNIL)) : intlist

INTNIL

INTCONS

the empty list

INTNIL 1

the list [1]

INTCONS
INTNIL 2

INTCONS

1

the list [1,2]

An intlist Length Function

 A length function
 Much like you would write for native lists
 Except, of course, that native lists are not

always lists of integers…

Chapter Eleven Modern Programming Languages, 2nd ed. 27

fun intlistLength INTNIL = 0
| intlistLength (INTCONS(_,tail)) =

1 + (intListLength tail);

fun listLength nil = 0
| listLength (_::tail) =

1 + (listLength tail);

Parametric List Type

 A parametric list type, almost like the
predefined list

 ML handles type inference in the usual way:

Chapter Eleven Modern Programming Languages, 2nd ed. 28

datatype 'element mylist =
NIL |
CONS of 'element * 'element mylist;

- CONS(1.0, NIL);
val it = CONS (1.0,NIL) : real mylist
- CONS(1, CONS(2, NIL));
val it = CONS (1,CONS (2,NIL)) : int mylist

Some mylist Functions

 This now works almost exactly like the
predefined list type constructor

 Of course, to add up a list you would use
foldr…

Chapter Eleven Modern Programming Languages, 2nd ed. 29

fun myListLength NIL = 0
| myListLength (CONS(_,tail)) =

1 + myListLength(tail);

fun addup NIL = 0
| addup (CONS(head,tail)) =

head + addup tail;

A foldr For mylist

 Definition of a function like foldr that
works on 'a mylist

 Can now add up an int mylist x with:
myfoldr (op +) 0 x

 One remaining difference: :: is an operator
and CONS is not

Chapter Eleven Modern Programming Languages, 2nd ed. 30

fun myfoldr f c NIL = c
| myfoldr f c (CONS(a,b)) =

f(a, myfoldr f c b);

Defining Operators (A Peek)

 ML allows new operators to be defined
 Like this:

Chapter Eleven Modern Programming Languages, 2nd ed. 31

- infixr 5 CONS;
infixr 5 CONS
- 1 CONS 2 CONS NIL;
val it = 1 CONS 2 CONS NIL : int mylist

Polymorphic Binary Tree
datatype 'data tree =

Empty |
Node of 'data tree * 'data * 'data tree;

Chapter Eleven Modern Programming Languages, 2nd ed. 32

Some values of
type int tree:

Empty
Node

the empty tree

2

the tree 2

Empty Empty

Node
3 Empty Empty

Node
1

the tree 2

Empty Empty 2

1 3

Node

Constructing Those Values

Chapter Eleven Modern Programming Languages, 2nd ed. 33

- val treeEmpty = Empty;
val treeEmpty = Empty : 'a tree
- val tree2 = Node(Empty,2,Empty);
val tree2 = Node (Empty,2,Empty) : int tree
- val tree123 = Node(Node(Empty,1,Empty),
= 2,
= Node(Empty,3,Empty));

Increment All Elements

Chapter Eleven Modern Programming Languages, 2nd ed. 34

fun incall Empty = Empty
| incall (Node(x,y,z)) =

Node(incall x, y+1, incall z);

- incall tree123;
val it = Node (Node (Empty,2,Empty),

3,
Node (Empty,4,Empty)) : int tree

Add Up The Elements

Chapter Eleven Modern Programming Languages, 2nd ed. 35

fun sumall Empty = 0
| sumall (Node(x,y,z)) =

sumall x + y + sumall z;

- sumall tree123;
val it = 6 : int

Convert To List (Polymorphic)

Chapter Eleven Modern Programming Languages, 2nd ed. 36

fun listall Empty = nil
| listall (Node(x,y,z)) =

listall x @ y :: listall z;

- listall tree123;
val it = [1,2,3] : int list

Tree Search

Chapter Eleven Modern Programming Languages, 2nd ed. 37

fun isintree x Empty = false
| isintree x (Node(left,y,right)) =

x=y
orelse isintree x left
orelse isintree x right;

- isintree 4 tree123;
val it = false : bool
- isintree 3 tree123;
val it = true : bool

Outline

 Enumerations
 Data constructors with parameters
 Type constructors with parameters
 Recursively defined type constructors
 Farewell to ML

Chapter Eleven Modern Programming Languages, 2nd ed. 38

That's All

 That’s all the ML we will see
 There is, of course, a lot more
 A few words about the parts we skipped:

– records (like tuples with named fields)
– arrays, with elements that can be altered
– references, for values that can be altered
– exception handling

Chapter Eleven Modern Programming Languages, 2nd ed. 39

More Parts We Skipped

– support for encapsulation and data hiding:
 structures: collections of datatypes, functions, etc.
 signatures: interfaces for structures
 functors: like functions that operate on structures,

allowing type variables and other things to be
instantiated across a whole structure

Chapter Eleven Modern Programming Languages, 2nd ed. 40

More Parts We Skipped

– API: the standard basis
 predefined functions, types, etc.
 Some at the top level but most in structures:
Int.maxInt, Real.Math.sqrt, List.nth,
etc.

Chapter Eleven Modern Programming Languages, 2nd ed. 41

More Parts We Skipped

– eXene: an ML library for applications that work
in the X window system

– the Compilation Manager for building large
ML projects

 Other dialects besides Standard ML
– Ocaml
– F# (in Visual Studio, for the .NET platform)
– Concurrent ML (CML) extensions

Chapter Eleven Modern Programming Languages, 2nd ed. 42

Functional Languages

 ML supports a function-oriented style of
programming

 If you like that style, there are many other
languages to explore, like Lisp and Haskell

Chapter Eleven Modern Programming Languages, 2nd ed. 43

	A Fourth Look At ML
	Type Definitions
	Outline
	Defining Your Own Types
	Example
	No Parameters
	Strict Typing
	Data Constructors In Patterns
	Outline
	Wrappers
	Slide Number 11
	A Value Is Not An int
	Patterns With Data Constructors
	An Exhaustive Pattern
	Pattern-Matching Function
	Exception Handling (A Peek)
	Outline
	Type Constructors With Parameters
	Parameter Before Name
	Uses For option
	Longer Example: bunch
	Example: Polymorphism
	Example: No Polymorphism
	Outline
	Recursively Defined Type Constructors
	Constructing Those Values
	An intlist Length Function
	Parametric List Type
	Some mylist Functions
	A foldr For mylist
	Defining Operators (A Peek)
	Polymorphic Binary Tree
	Constructing Those Values
	Increment All Elements
	Add Up The Elements
	Convert To List (Polymorphic)
	Tree Search
	Outline
	That's All
	More Parts We Skipped
	More Parts We Skipped
	More Parts We Skipped
	Functional Languages

