A Third Look At ML

Outline

- More pattern matching
- Function values and anonymous functions
- Higher-order functions and currying
- Predefined higher-order functions

More Pattern-Matching

- Last time we saw pattern-matching in function definitions:
- fun f $0=$ "zero"

$$
\text { | } f_{-}=\text {"non-zero"; }
$$

- Pattern-matching occurs in several other kinds of ML expressions:
- case n of

$$
\begin{aligned}
& 0 \text { => "zero" | } \\
& \text { - => "non-zero"; }
\end{aligned}
$$

Match Syntax

- A rule is a piece of ML syntax that looks like this:
<rule> ::= <pattern> => <expression>
- A match consists of one or more rules separated by a vertical bar, like this:
<match> ::= <rule> | <rule> '|' <match>
- Each rule in a match must have the same type of expression on the right-hand side
- A match is not an expression by itself, but forms a part of several kinds of ML expressions

Case Expressions

$$
\begin{aligned}
& \text { - case 1+1 of } \\
& \text { = } 3 \text { => "three" | } \\
& \text { = } 2 \text { => "two" | } \\
& \text { = _ => "hmm"; } \\
& \text { val it = "two" : string }
\end{aligned}
$$

- The syntax is
<case-expr> ::= case <expression> of <match>
- This is a very powerful case construct-unlike many languages, it does more than just compare with constants

Example

```
case x of
    _::_::c::_ => c |
    _::b::_ => b |
a::_ => a |
nil => 0
```

The value of this expression is the third element of the list \mathbf{x}, if it has at least three, or the second element if \mathbf{x} has only two, or the first element if \mathbf{x} has only one, or 0 if \mathbf{x} is empty.

Generalizes if

```
if \(\exp _{1}\) then \(\exp _{2}\) else \(\exp _{3}\)
```

case $\exp _{1}$ of
true $=>\exp _{2}$ |
false $=>\exp _{3}$

- The two expressions above are equivalent
- So if-then-else is really just a special case of case

Outline

■ More pattern matching

- Function values and anonymous functions

- Higher-order functions and currying

■ Predefined higher-order functions

Predefined Functions

- When an ML language system starts, there are many predefined variables
- Some are bound to functions:

$$
\begin{aligned}
& \text { - ord; } \\
& \text { val it }=\text { fn }: \text { char }->\text { int } \\
& -\sim ; \\
& \text { val it }=\text { fn }: \text { int }->\text { int }
\end{aligned}
$$

Defining Functions

- We have seen the fun notation for defining new named functions
- You can also define new names for old functions, using val just as for other kinds of values:

$$
\begin{aligned}
& \text { - val x = ~; } \\
& \text { val } x=\text { fn : int -> int } \\
& -x \text { 3; } \\
& \text { val it }=-3 \text { : int }
\end{aligned}
$$

Function Values

- Functions in ML do not have names
- Just like other kinds of values, function values may be given one or more names by binding them to variables
- The fun syntax does two separate things:
- Creates a new function value
- Binds that function value to a name

Anonymous Functions

- Named function:

$$
\begin{aligned}
& - \text { fun } \mathrm{f} x=\mathrm{x}+\mathbf{2} \text {; } \\
& \text { val } \mathrm{f}=\mathrm{fn}: \text { int }->\text { int } \\
& -\mathrm{f} \text { 1; } \\
& \text { val it }=3 \text { : int }
\end{aligned}
$$

- Anonymous function:

$$
\begin{aligned}
& \text { - fn x => x + 2; } \\
& \text { val it = fn : int -> int } \\
& \text { - (fn x => x + 2) 1; } \\
& \text { val it = } 3 \text { : int }
\end{aligned}
$$

The fn Syntax

- Another use of the match syntax <fun-expr> ::= fn <match>
- Using $\mathbf{f n}$, we get an expression whose value is an (anonymous) function
- We can define what fun does in terms of val and $\mathbf{f n}$
- These two definitions have the same effect:
- fun $f x=x+2$
- val $f=f n x=>x+2$

Using Anonymous Functions

- One simple application: when you need a small function in just one place
- Without fn:
- fun intBefore (a,b) = $\mathbf{a}<\mathrm{b}$; val intBefore $=f n$: int * int -> bool - quicksort ([1,4,3,2,5], intBefore); val it = [1,2,3,4,5] : int list
- With fn:
- quicksort ([1,4,3,2,5], fn (a,b) => a<b); val it $=[1,2,3,4,5]$: int list
- quicksort ([1,4,3,2,5], fn (a,b) => a>b); val it = [5,4,3,2,1] : int list

The op keyword

```
- op *;
val it = fn : int * int -> int
- quicksort ([1,4,3,2,5], op <);
val it = [1,2,3,4,5] : int list
```

- Binary operators are special functions
- Sometimes you want to treat them like plain functions: to pass <, for example, as an argument of type int * int -> bool
- The keyword op before an operator gives you the underlying function

Outline

■ More pattern matching

■ Function values and anonymous functions

- Higher-order functions and currying
- Predefined higher-order functions

Higher-order Functions

- Every function has an order:
- A function that does not take any functions as parameters, and does not return a function value, has order 1
- A function that takes a function as a parameter or returns a function value has order $n+1$, where n is the order of its highest-order parameter or returned value
- The quicksort we just saw is a second-order function

Practice

What is the order of functions with each of the following ML types?
int * int -> bool
int list * (int * int -> bool) -> int list
int -> int -> int
(int -> int) * (int -> int) -> (int -> int) int -> bool -> real -> string

What can you say about the order of a function with this type?

$$
\left({ }^{\prime} \mathrm{a}->\mathrm{'}^{\prime} \mathrm{b}\right) *\left({ }^{\prime} \mathrm{c}->\text { 'a) }->\right.\text { 'c -> 'b }
$$

Currying

- We've seen how to get two parameters into a function by passing a 2-tuple:
fun $f(a, b)=a+b ;$
- Another way is to write a function that takes the first argument, and returns another function that takes the second argument:
fun g a $=$ fn $b=>a+b ;$
- The general name for this is currying

Curried Addition

- fun f (a,b) = a+b;
val f = fn : int * int -> int
- fun g a = fn b => a+b;
val g = fn : int -> int -> int
- f(2,3);
val it = 5 : int
- g 2 3;
val it = 5 : int
- Remember that function application is leftassociative
- So g 23 means ((g 2) 3) $_{\text {(}}$

Advantages

■ No tuples: we get to write g 23 instead of f(2,3)
\square But the real advantage: we get to specialize functions for particular initial parameters

```
- val add2 = g 2;
val add2 = fn : int -> int
- add2 3;
val it = 5 : int
- add2 10;
val it = 12 : int
```


Advantages: Example

- Like the previous quicksort
- But now, the comparison function is a first, curried parameter

```
- quicksort (op <) [1,4,3,2,5];
val it = [1,2,3,4,5] : int list
- val sortBackward = quicksort (op >);
val sortBackward = fn : int list -> int list
- sortBackward [1,4,3,2,5];
val it = [5,4,3,2,1] : int list
```


Multiple Curried Parameters

- Currying generalizes to any number of parameters

```
- fun f (a,b,c) = a+b+c;
val f = fn : int * int * int -> int
- fun g a = fn b => fn c => a+b+c;
val g = fn : int -> int -> int -> int
- f (1,2,3);
val it = 6 : int
- g 1 2 3;
val it = 6 : int
```


Notation For Currying

- There is a much simpler notation for currying (on the next slide)
- The long notation we have used so far makes the little intermediate anonymous functions explicit
fun $g a=f n b=>f n c=>a+b+$
- But as long as you understand how it works, the simpler notation is much easier to read and write

Easier Notation for Currying

- Instead of writing:
fun fa $=\mathrm{fn} \mathrm{b}=>\mathrm{a}+\mathrm{b}$;
- We can just write:

$$
\text { fun } f a b=a+b ;
$$

- This generalizes for any number of curried arguments

```
- fun f a b c d = a+b+c+d;
val f = fn : int -> int -> int -> int -> int
```


Outline

■ More pattern matching
 ■ Function values and anonymous functions
 - Higher-order functions and currying
 - Predefined higher-order functions

Predefined Higher-Order Functions

- We will use three important predefined higher-order functions:
- map
- foldr
- foldl
- Actually, foldr and foldl are very similar, as you might guess from the names

The map Function

- Used to apply a function to every element of a list, and collect a list of results
- map ~ [1,2,3,4];
val it $=[\sim 1, \sim 2, \sim 3, \sim 4]$: int list
- map (fn x => x+1) [1,2,3,4];
val it $=[2,3,4,5]$: int list
- map (fn x => x mod 2 = 0) [1,2,3,4];
val it = [false,true,false,true] : bool list - map (op +) [(1,2),(3,4),(5,6)];
val it = [3,7,11] : int list

The map Function Is Curried

```
- map;
val it = fn : ('a -> 'b) -> 'a list -> 'b list
- val f = map (op +);
val f = fn : (int * int) list -> int list
- f [(1,2),(3,4)];
val it = [3,7] : int list
```


The foldr Function

- Used to combine all the elements of a list
- For example, to add up all the elements of a list \mathbf{x}, we could write foldr (op +) $\mathbf{0}$ x
- It takes a function f, a starting value c, and a list x $=\left[x_{1}, \ldots, x_{n}\right]$ and computes:

$$
f\left(x_{1}, f\left(x_{2}, \cdots f\left(x_{n-1}, f\left(x_{n}, c\right)\right) \cdots\right)\right)
$$

- So foldr (op +) 0 [1,2,3,4] evaluates as $1+(2+(3+(4+0)))=10$

Examples

$$
\begin{aligned}
& \text { - foldr (op +) } 0 \text { [1,2,3,4]; } \\
& \text { val it = 10 : int } \\
& \text { - foldr (op *) } 1 \text { [1,2,3,4]; } \\
& \text { val it = } 24 \text { : int } \\
& \text { - foldr (op ^) "" ["abc","def", "ghi"]; } \\
& \text { val it = "abcdefghi" : string } \\
& \text { - foldr (op ::) [5] [1,2,3,4]; } \\
& \text { val it }=[1,2,3,4,5]: \text { int list }
\end{aligned}
$$

The foldr Function Is Curried

```
- foldr;
val it = fn : ('a * 'b -> 'b) -> 'b -> 'a list -> 'b
- foldr (op +);
val it = fn : int -> int list -> int
- foldr (op +) 0;
val it = fn : int list -> int
- val addup = foldr (op +) 0;
val addup = fn : int list -> int
- addup [1,2,3,4,5];
val it = 15 : int
```


The foldl Function

- Used to combine all the elements of a list - Same results as foldr in some cases

$$
\begin{aligned}
& \text { - foldl (op +) } 0 \text { [1,2,3,4]; } \\
& \text { val it }=10 \text { : int } \\
& - \text { foldl (op *) } 1 \text { [1,2,3,4]; } \\
& \text { val it }=24 \text { : int }
\end{aligned}
$$

The foldl Function

- To add up all the elements of a list \mathbf{x}, we could write foldl (op +) $0 \times$
- It takes a function f, a starting value c, and a list x $=\left[x_{1}, \ldots, x_{n}\right]$ and computes:

$$
f\left(x_{n}, f\left(x_{n-1}, \cdots f\left(x_{2}, f\left(x_{1}, c\right)\right) \cdots\right)\right)
$$

- So foldl (op +) 0 [1,2,3,4] evaluates as $4+(3+(2+(1+0)))=10$
- Remember, foldr did $1+(2+(3+(4+0)))=10$

The foldl Function

- foldl starts at the left, foldr starts at the right
- Difference does not matter when the function is associative and commutative, like + and *
- For other operations, it does matter
- foldr (op ^) "" ["abc","def","ghi"];
val it = "abcdefghi" : string
- foldl (op ^) "" ["abc","def","ghi"];
val it = "ghidefabc" : string
- foldr (op -) 0 [1,2,3,4];
val it $=\sim 2$: int
- foldl (op -) 0 [1,2,3,4];
val it = 2 : int

