
Polymorphism

Chapter Eight Modern Programming Languages, 2nd ed. 1

Introduction
 Compare these function types
 The ML function is more flexible, since it

can be applied to any pair of the same
(equality-testable) type

Chapter Eight Modern Programming Languages, 2nd ed. 2

int f(char a, char b) {
return a==b;

}

- fun f(a, b) = (a = b);
val f = fn : ''a * ''a -> bool

ML:

C:

Polymorphism
 Functions with that extra flexibility are

called polymorphic
 A difficult word to define:

– Applies to a wide variety of language features
– Most languages have at least a little
– We will examine four major examples, then

return to the problem of finding a definition
that covers them

Chapter Eight Modern Programming Languages, 2nd ed. 3

Outline

 Overloading
 Parameter coercion
 Parametric polymorphism
 Subtype polymorphism
 Definitions and classifications

Chapter Eight Modern Programming Languages, 2nd ed. 4

Overloading

 An overloaded function name or operator is
one that has at least two definitions, all of
different types

 Many languages have overloaded operators
 Some also allow the programmer to define

new overloaded function names and
operators

Chapter Eight Modern Programming Languages, 2nd ed. 5

Predefined Overloaded Operators

Chapter Eight Modern Programming Languages, 2nd ed. 6

Pascal: a := 1 + 2;
b := 1.0 + 2.0;
c := "hello " + "there";
d := ['a'..'d'] + ['f']

ML: val x = 1 + 2;
val y = 1.0 + 2.0;

Adding to Overloaded Operators
 Some languages, like C++, allow additional

meanings to be defined for operators

Chapter Eight Modern Programming Languages, 2nd ed. 7

class complex {
double rp, ip; // real part, imaginary part

public:
complex(double r, double i) {rp=r; ip=i;}
friend complex operator+(complex, complex);
friend complex operator*(complex, complex);

};

void f(complex a, complex b, complex c) {
complex d = a + b * c;
…

}

Operator Overloading In C++
 C++ allows virtually all operators to be

overloaded, including:
– the usual operators (+,-,*,/,%,^,&,|,~,!,=,<,>,
+=,-=,=,*=,/=,%=,^=,&=,|=,<<,>>,>>=,<<=,==,
!=,<=,>=,&&,||,++,--,->*,,)

– dereferencing (*p and p->x)
– subscripting (a[i])
– function call (f(a,b,c))
– allocation and deallocation (new and delete)

Chapter Eight Modern Programming Languages, 2nd ed. 8

Defining Overloaded Functions

 Some languages, like C++, permit the
programmer to overload function names

Chapter Eight Modern Programming Languages, 2nd ed. 9

int square(int x) {
return x*x;

}

double square(double x) {
return x*x;

}

To Eliminate Overloading

Chapter Eight Modern Programming Languages, 2nd ed. 10

int square(int x) {
return x*x;

}

double square(double x) {
return x*x;

}

void f() {
int a = square(3);
double b = square(3.0);

}

You could rename
each overloaded
definition uniquely…

square_i

square_d

How To Eliminate Overloading

Chapter Eight Modern Programming Languages, 2nd ed. 11

int square_i(int x) {
return x*x;

}

double square_d(double x) {
return x*x;

}

void f() {
int a = square_i(3);
double b = square_d(3.0);

}

Then rename each
reference properly
(depending on the
parameter types)

Implementing Overloading

 Compilers usually implement overloading
in that same way:
– Create a set of monomorphic functions, one for

each definition
– Invent a mangled name for each, encoding the

type information
– Have each reference use the appropriate

mangled name, depending on the parameter
types

Chapter Eight Modern Programming Languages, 2nd ed. 12

Example: C++ Implementation

Chapter Eight Modern Programming Languages, 2nd ed. 13

int shazam(int a, int b) {return a+b;}
double shazam(double a, double b) {return a+b;}

shazam__Fii:
lda $30,-32($30)
.frame $15,32,$26,0
…

shazam__Fdd:
lda $30,-32($30)
.frame $15,32,$26,0
…

C++:

Assembler:

Outline

 Overloading
 Parameter coercion
 Parametric polymorphism
 Subtype polymorphism
 Definitions and classifications

Chapter Eight Modern Programming Languages, 2nd ed. 14

Coercion

 A coercion is an implicit type conversion,
supplied automatically even if the
programmer leaves it out

Chapter Eight Modern Programming Languages, 2nd ed. 15

double x;
x = (double) 2;

double x;
x = 2;

Explicit type
conversion in Java:

Coercion in Java:

Parameter Coercion

 Languages support different coercions in
different contexts: assignments, other binary
operations, unary operations, parameters…

 When a language supports coercion of
parameters on a function call (or of
operands when an operator is applied), the
resulting function (or operator) is
polymorphic

Chapter Eight Modern Programming Languages, 2nd ed. 16

Example: Java

Chapter Eight Modern Programming Languages, 2nd ed. 17

void f(double x) {
…

}

f((byte) 1);
f((short) 2);
f('a');
f(3);
f(4L);
f(5.6F);

This f can be called with any type
of parameter Java is willing to
coerce to type double

Defining Coercions

 Language definitions often take many pages
to define exactly which coercions are
performed

 Some languages, especially some older
languages like Algol 68 and PL/I, have very
extensive powers of coercion

 Some, like ML, have none
 Most, like Java, are somewhere in the

middle
Chapter Eight Modern Programming Languages, 2nd ed. 18

Example: Java

Chapter Eight Modern Programming Languages, 2nd ed. 19

Some operators apply unary numeric promotion to a single operand, which must produce a
value of a numeric type:

If the operand is of compile-time type Byte, Short, Character, or Integer it is
subjected to unboxing conversion. The result is then promoted to a value of type int by a
widening conversion or an identity conversion. Otherwise, if the operand is of compile-time
type Long, Float, or Double it is subjected to unboxing conversion. Otherwise, if the
operand is of compile-time type byte, short, or char, unary numeric promotion promotes
it to a value of type int by a widening conversion. Otherwise, a unary numeric operand
remains as is and is not converted. In any case, value set conversion is then applied.

Unary numeric promotion is performed on expressions in the following situations:
• Each dimension expression in an array creation expression
• The index expression in an array access expression
• The operand of a unary plus operator +
• The operand of a unary minus operator -
• The operand of a bitwise complement operator ~
• Each operand, separately, of a shift operator >>, >>>, or <<; therefore a long shift

distance
(right operand) does not promote the value being shifted (left operand) to long… The Java Language Specification, Third Edition

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha

Coercion and Overloading:
Tricky Interactions
 There are potentially tricky interactions

between overloading and coercion
– Overloading uses the types to choose the

definition
– Coercion uses the definition to choose a type

conversion

Chapter Eight Modern Programming Languages, 2nd ed. 20

Example
 Suppose that, like C++, a language is

willing to coerce char to int or to
double

 Which square gets called for
square('a') ?

Chapter Eight Modern Programming Languages, 2nd ed. 21

int square(int x) {
return x*x;

}
double square(double x) {

return x*x;
}

Example
 Suppose that, like C++, a language is

willing to coerce char to int
 Which f gets called for f('a', 'b') ?

Chapter Eight Modern Programming Languages, 2nd ed. 22

void f(int x, char y) {
…

}
void f(char x, int y) {

…
}

Outline

 Overloading
 Parameter coercion
 Parametric polymorphism
 Subtype polymorphism
 Definitions and classifications

Chapter Eight Modern Programming Languages, 2nd ed. 23

Parametric Polymorphism

 A function exhibits parametric
polymorphism if it has a type that contains
one or more type variables

 A type with type variables is a polytype
 Found in languages including ML, C++,

Ada, and Java

Chapter Eight Modern Programming Languages, 2nd ed. 24

Example: C++ Function
Templates

Chapter Eight Modern Programming Languages, 2nd ed. 25

template<class X> X max(X a, X b) {
return a>b ? a : b;

}

void g(int a, int b, char c, char d) {
int m1 = max(a,b);
char m2 = max(c,d);

}

Note that > can be overloaded, so X is not
limited to types for which > is predefined.

Example: ML Functions

Chapter Eight Modern Programming Languages, 2nd ed. 26

- fun identity x = x;
val identity = fn : 'a -> 'a
- identity 3;
val it = 3 : int
- identity "hello";
val it = "hello" : string
- fun reverse x =
= if null x then nil
= else (reverse (tl x)) @ [(hd x)];
val reverse = fn : 'a list -> 'a list

Implementing Parametric
Polymorphism
 One extreme: many copies

– Create a set of monomorphic implementations, one for
each type parameter the compiler sees
 May create many similar copies of the code
 Each one can be optimized for individual types

 The other extreme: one copy
– Create one implementation, and use it for all

 True universal polymorphism: only one copy
 Can’t be optimized for individual types

 Many variations in between

Chapter Eight Modern Programming Languages, 2nd ed. 27

Outline

 Overloading
 Parameter coercion
 Parametric polymorphism
 Subtype polymorphism
 Definitions and classifications

Chapter Eight Modern Programming Languages, 2nd ed. 28

Subtype Polymorphism

 A function or operator exhibits subtype
polymorphism if one or more of its
parameter types have subtypes

 Important source of polymorphism in
languages with a rich structure of subtypes

 Especially object-oriented languages: we’ll
see more when we look at Java

Chapter Eight Modern Programming Languages, 2nd ed. 29

Example: Pascal

Chapter Eight Modern Programming Languages, 2nd ed. 30

type
Day = (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
Weekday = Mon..Fri;

function nextDay(D: Day): Day;
begin
if D=Sun then nextDay:=Mon else nextDay:=D+1

end;

procedure p(D: Day; W: Weekday);
begin
D := nextDay(D);
D := nextDay(W)

end;
Subtype polymorphism:
nextDay can be called with
a subtype parameter

Example: Java

Chapter Eight Modern Programming Languages, 2nd ed. 31

class Car {
void brake() { … }

}

class ManualCar extends Car
{
void clutch() { … }

}

void g(Car z) {
z.brake();

}

void f(Car x, ManualCar y) {
g(x);
g(y);

}

A subtype of Car is
ManualCar

Function g has an
unlimited number of
types—one for every
class we define that is a
subtype of Car

That’s subtype
polymorphism

More Later

 We’ll see more about subtype
polymorphism when we look at object-
oriented languages

Chapter Eight Modern Programming Languages, 2nd ed. 32

Outline

 Overloading
 Parameter coercion
 Parametric polymorphism
 Subtype polymorphism
 Definitions and classifications

Chapter Eight Modern Programming Languages, 2nd ed. 33

Polymorphism

 We have seen four kinds of polymorphic functions
 There are many other uses of polymorphic:

– Polymorphic variables, classes, packages, languages
– Another name for runtime method dispatch: when
x.f() may call different methods depending on the
runtime class of the object x

– Used in many other sciences
 No definition covers all these uses, except the

basic Greek: many forms
 Here are definitions that cover our four…

Chapter Eight Modern Programming Languages, 2nd ed. 34

Definitions For Our Four

 A function or operator is polymorphic if it
has at least two possible types
– It exhibits ad hoc polymorphism if it has at least

two but only finitely many possible types
– It exhibits universal polymorphism if it has

infinitely many possible types

Chapter Eight Modern Programming Languages, 2nd ed. 35

Overloading

 Ad hoc polymorphism
 Each different type requires a separate

definition
 Only finitely many in a finite program

Chapter Eight Modern Programming Languages, 2nd ed. 36

Parameter Coercion

 Ad hoc polymorphism
 As long as there are only finitely many

different types can be coerced to a given
parameter type

Chapter Eight Modern Programming Languages, 2nd ed. 37

Parametric Polymorphism

 Universal polymorphism
 As long as the universe over which type

variables are instantiated is infinite

Chapter Eight Modern Programming Languages, 2nd ed. 38

Subtype Polymorphism

 Universal
 As long as there is no limit to the number of

different subtypes that can be declared for a
given type

 True for all class-based object-oriented
languages, like Java

Chapter Eight Modern Programming Languages, 2nd ed. 39

	Polymorphism
	Introduction
	Polymorphism
	Outline
	Overloading
	Predefined Overloaded Operators
	Adding to Overloaded Operators
	Operator Overloading In C++
	Defining Overloaded Functions
	To Eliminate Overloading
	How To Eliminate Overloading
	Implementing Overloading
	Example: C++ Implementation
	Outline
	Coercion
	Parameter Coercion
	Example: Java
	Defining Coercions
	Example: Java
	Coercion and Overloading: Tricky Interactions
	Example
	Example
	Outline
	Parametric Polymorphism
	Example: C++ Function Templates
	Example: ML Functions
	Implementing Parametric Polymorphism
	Outline
	Subtype Polymorphism
	Example: Pascal
	Example: Java
	More Later
	Outline
	Polymorphism
	Definitions For Our Four
	Overloading
	Parameter Coercion
	Parametric Polymorphism
	Subtype Polymorphism

