
Language Systems

Chapter Four Modern Programming Languages, 2nd ed. 1

Outline

 The classical sequence
 Variations on the classical sequence
 Binding times
 Debuggers
 Runtime support

Chapter Four Modern Programming Languages, 2nd ed. 2

The Classical Sequence

 Integrated development environments are
wonderful, but…

 Old-fashioned, un-integrated systems make the
steps involved in running a program more clear

 We will look the classical sequence of steps
involved in running a program

 (The example is generic: details vary from
machine to machine)

Chapter Four Modern Programming Languages, 2nd ed. 3

Creating

 The programmer uses an editor to create a text file
containing the program

 A high-level language: machine independent
 This C-like example program calls fred 100

times, passing each i from 1 to 100:

Chapter Four Modern Programming Languages, 2nd ed. 4

int i;
void main() {

for (i=1; i<=100; i++)
fred(i);

}

Compiling

 Compiler translates to assembly language
 Machine-specific
 Each line represents either a piece of data,

or a single machine-level instruction
 Programs used to be written directly in

assembly language, before Fortran (1957)
 Now used directly only when the compiler

does not do what you want, which is rare

Chapter Four Modern Programming Languages, 2nd ed. 5

Chapter Four Modern Programming Languages, 2nd ed. 6

int i;
void main() {
for (i=1; i<=100; i++)

fred(i);
}

i: data word 0
main: move 1 to i
t1: compare i with 100

jump to t2 if greater
push i
call fred
add 1 to i
go to t1

t2: return

compiler

Assembling

 Assembly language is still not directly
executable
– Still text format, readable by people
– Still has names, not memory addresses

 Assembler converts each assembly-
language instruction into the machine’s
binary format: its machine language

 Resulting object file not readable by people

Chapter Four Modern Programming Languages, 2nd ed. 7

Chapter Four Modern Programming Languages, 2nd ed. 8

i: data word 0
main: move 1 to i
t1: compare i with 100

jump to t2 if greater
push i
call fred
add 1 to i
go to t1

t2: return

assembler

xxxx i

0

xx i x
xxxxxx
xxxx i
x fred
xxxx i
xxxxxx
xxxxxx

i:

main:

Linking

 Object file still not directly executable
– Missing some parts
– Still has some names
– Mostly machine language, but not entirely

 Linker collects and combines all the different parts
 In our example, fred was compiled separately,

and may even have been written in a different
high-level language

 Result is the executable file

Chapter Four Modern Programming Languages, 2nd ed. 9

Chapter Four Modern Programming Languages, 2nd ed. 10

linker

xxxx i

0

xx i x
xxxxxx
xxxx i
x fred
xxxx i
xxxxxx
xxxxxx

i:

main: xxxx i

0

xx i x
xxxxxx
xxxx i
x fred
xxxx i
xxxxxx
xxxxxx

i:

main:

fred: xxxxxx
xxxxxx
xxxxxx

Loading

 “Executable” file still not directly
executable
– Still has some names
– Mostly machine language, but not entirely

 Final step: when the program is run, the
loader loads it into memory and replaces
names with addresses

Chapter Four Modern Programming Languages, 2nd ed. 11

A Word About Memory

 For our example, we are assuming a very simple
kind of memory architecture

 Memory organized as an array of bytes
 Index of each byte in this array is its address
 Before loading, language system does not know

where in this array the program will be placed
 Loader finds an address for every piece and

replaces names with addresses

Chapter Four Modern Programming Languages, 2nd ed. 12

Chapter Four Modern Programming Languages, 2nd ed. 13

loader

xxxx i

0

xx i x
xxxxxx
xxxx i
x fred
xxxx i
xxxxxx
xxxxxx

i:

main:

fred: xxxxxx
xxxxxx
xxxxxx

xxxx 80

0

xx 80 x
xxxxxx
xxxx 80
x 60

xxxx 80
xxxxxx
xxxxxx

20:

60: xxxxxx
xxxxxx
xxxxxx

0:

(main)

(fred)

80:
(i)

Running

 After loading, the program is entirely
machine language
– All names have been replaced with memory

addresses
 Processor begins executing its instructions,

and the program runs

Chapter Four Modern Programming Languages, 2nd ed. 14

The Classical Sequence

Chapter Four Modern Programming Languages, 2nd ed. 15

editor compiler assembler

loaderlinker

source
file

assembly-
language file

object
file

executable
file

running program
in memory

About Optimization

 Code generated by a compiler is usually
optimized to make it faster, smaller, or both

 Other optimizations may be done by the
assembler, linker, and/or loader

 A misnomer: the resulting code is better,
but not guaranteed to be optimal

Chapter Four Modern Programming Languages, 2nd ed. 16

Example

 Original code:

 Improved code, with loop invariant moved:

Chapter Four Modern Programming Languages, 2nd ed. 17

int i = 0;
while (i < 100) {

a[i++] = x*x*x;
}

int i = 0;
int temp = x*x*x;
while (i < 100) {

a[i++] = temp;
}

Example

 Loop invariant removal is handled by most
compilers

 That is, most compilers generate the same
efficient code from both of the previous
examples

 So it is a waste of the programmer’s time to
make the transformation manually

Chapter Four Modern Programming Languages, 2nd ed. 18

Other Optimizations

 Some, like LIR, add variables
 Others remove variables, remove code, add

code, move code around, etc.
 All make the connection between source

code and object code more complicated
 A simple question, such as “What assembly

language code was generated for this
statement?” may have a complicated answer

Chapter Four Modern Programming Languages, 2nd ed. 19

Outline

 The classical sequence
 Variations on the classical sequence
 Binding times
 Debuggers
 Runtime support

Chapter Four Modern Programming Languages, 2nd ed. 20

Variation: Hiding The Steps

 Many language systems make it possible to do the
compile-assemble-link part with one command

 Example: gcc command on a Unix system:

Chapter Four Modern Programming Languages, 2nd ed. 21

gcc main.c gcc main.c –S
as main.s –o main.o
ld …

Compile, then assemble,
then link

Compile-assemble-link

Compiling to Object Code

 Many modern compilers incorporate all the
functionality of an assembler

 They generate object code directly

Chapter Four Modern Programming Languages, 2nd ed. 22

Variation: Integrated
Development Environments
 A single interface for editing, running and

debugging programs
 Integration can add power at every step:

– Editor knows language syntax
– System may keep a database of source code (not

individual text files) and object code
– System may maintain versions, coordinate

collaboration
– Rebuilding after incremental changes can be

coordinated, like Unix make but language-specific
– Debuggers can benefit (more on this in a minute…)

Chapter Four Modern Programming Languages, 2nd ed. 23

Variation: Interpreters

 To interpret a program is to carry out the steps it
specifies, without first translating into a lower-
level language

 Interpreters are usually much slower
– Compiling takes more time up front, but program runs

at hardware speed
– Interpreting starts right away, but each step must be

processed in software
 Sounds like a simple distinction…

Chapter Four Modern Programming Languages, 2nd ed. 24

Virtual Machines

 A language system can produce code in a machine
language for which there is no hardware: an
intermediate code

 Virtual machine must be simulated in software –
interpreted, in fact

 Language system may do the whole classical
sequence, but then interpret the resulting
intermediate-code program

 Why?

Chapter Four Modern Programming Languages, 2nd ed. 25

Why Virtual Machines

 Cross-platform execution
– Virtual machine can be implemented in

software on many different platforms
– Simulating physical machines is harder

 Heightened security
– Running program is never directly in charge
– Interpreter can intervene if the program tries to

do something it shouldn’t

Chapter Four Modern Programming Languages, 2nd ed. 26

The Java Virtual Machine

 Java languages systems usually compile to
code for a virtual machine: the JVM

 JVM language is sometimes called bytecode
 Bytecode interpreter is part of almost every

Web browser
 When you browse a page that contains a

Java applet, the browser runs the applet by
interpreting its bytecode

Chapter Four Modern Programming Languages, 2nd ed. 27

Intermediate Language Spectrum

 Pure interpreter
– Intermediate language = high-level language

 Tokenizing interpreter
– Intermediate language = token stream

 Intermediate-code compiler
– Intermediate language = virtual machine language

 Native-code compiler
– Intermediate language = physical machine language

Chapter Four Modern Programming Languages, 2nd ed. 28

Delayed Linking

 Delay linking step
 Code for library functions is not included in

the executable file of the calling program

Chapter Four Modern Programming Languages, 2nd ed. 29

Delayed Linking: Windows

 Libraries of functions for delayed linking are
stored in .dll files: dynamic-link library

 Many language systems share this format
 Two flavors

– Load-time dynamic linking
 Loader finds .dll files (which may already be in memory)

and links the program to functions it needs, just before running
– Run-time dynamic linking

 Running program makes explicit system calls to find .dll
files and load specific functions

Chapter Four Modern Programming Languages, 2nd ed. 30

Delayed Linking: Unix

 Libraries of functions for delayed linking are
stored in .so files: shared object

 Suffix .so followed by version number
 Many language systems share this format
 Two flavors

– Shared libraries
 Loader links the program to functions it needs before running

– Dynamically loaded libraries
 Running program makes explicit system calls to find library

files and load specific functions

Chapter Four Modern Programming Languages, 2nd ed. 31

Delayed Linking: Java

 JVM automatically loads and links classes
when a program uses them

 Class loader does a lot of work:
– May load across Internet
– Thoroughly checks loaded code to make sure it

complies with JVM requirements

Chapter Four Modern Programming Languages, 2nd ed. 32

Delayed Linking Advantages

 Multiple programs can share a copy of
library functions: one copy on disk and in
memory

 Library functions can be updated
independently of programs: all programs
use repaired library code next time they run

 Can avoid loading code that is never used

Chapter Four Modern Programming Languages, 2nd ed. 33

Profiling

 The classical sequence runs twice
 First run of the program collects statistics:

parts most frequently executed, for example
 Second compilation uses this information to

help generate better code

Chapter Four Modern Programming Languages, 2nd ed. 34

Dynamic Compilation

 Some compiling takes place after the program
starts running

 Many variations:
– Compile each function only when called
– Start by interpreting, compile only those pieces that are

called frequently
– Compile roughly at first (for instance, to intermediate

code); spend more time on frequently executed pieces
(for instance, compile to native code and optimize)

 Just-in-time (JIT) compilation

Chapter Four Modern Programming Languages, 2nd ed. 35

Outline

 The classical sequence
 Variations on the classical sequence
 Binding times
 Debuggers
 Runtime support

Chapter Four Modern Programming Languages, 2nd ed. 36

Binding
 Binding means associating two things—

especially, associating some property with an
identifier from the program

 In our example program:
– What set of values is associated with int?
– What is the type of fred?
– What is the address of the object code for main?
– What is the value of i?

Chapter Four Modern Programming Languages, 2nd ed. 37

int i;
void main() {

for (i=1; i<=100; i++)
fred(i);

}

Binding Times

 Different bindings take place at different times
 There is a standard way of describing binding

times with reference to the classical sequence:
– Language definition time
– Language implementation time
– Compile time
– Link time
– Load time
– Runtime

Chapter Four Modern Programming Languages, 2nd ed. 38

Language Definition Time

 Some properties are bound when the
language is defined:
– Meanings of keywords: void, for, etc.

Chapter Four Modern Programming Languages, 2nd ed. 39

int i;
void main() {

for (i=1; i<=100; i++)
fred(i);

}

Language Implementation Time

 Some properties are bound when the language
system is written:
– range of values of type int in C (but in Java, these are

part of the language definition)
– implementation limitations: max identifier length, max

number of array dimensions, etc

Chapter Four Modern Programming Languages, 2nd ed. 40

int i;
void main() {

for (i=1; i<=100; i++)
fred(i);

}

Compile Time
 Some properties are bound when the program is

compiled or prepared for interpretation:
– Types of variables, in languages like C and ML that use

static typing
– Declaration that goes with a given use of a variable, in

languages that use static scoping (most languages)

Chapter Four Modern Programming Languages, 2nd ed. 41

int i;
void main() {

for (i=1; i<=100; i++)
fred(i);

}

Link Time

 Some properties are bound when separately-
compiled program parts are combined into
one executable file by the linker:
– Object code for external function names

Chapter Four Modern Programming Languages, 2nd ed. 42

int i;
void main() {

for (i=1; i<=100; i++)
fred(i);

}

Load Time

 Some properties are bound when the program is
loaded into the computer’s memory, but before it
runs:
– Memory locations for code for functions
– Memory locations for static variables

Chapter Four Modern Programming Languages, 2nd ed. 43

int i;
void main() {

for (i=1; i<=100; i++)
fred(i);

}

Run Time

 Some properties are bound only when the code in
question is executed:
– Values of variables
– Types of variables, in languages like Lisp that use

dynamic typing
– Declaration that goes with a given use of a variable (in

languages that use dynamic scoping)
 Also called late or dynamic binding (everything

before run time is early or static)

Chapter Four Modern Programming Languages, 2nd ed. 44

Late Binding, Early Binding

 The most important question about a
binding time: late or early?
– Late: generally, this is more flexible at runtime

(as with types, dynamic loading, etc.)
– Early: generally, this is faster and more secure

at runtime (less to do, less that can go wrong)
 You can tell a lot about a language by

looking at the binding times

Chapter Four Modern Programming Languages, 2nd ed. 45

Outline

 The classical sequence
 Variations on the classical sequence
 Binding times
 Debuggers
 Runtime support

Chapter Four Modern Programming Languages, 2nd ed. 46

Debugging Features

 Examine a snapshot, such as a core dump
 Examine a running program on the fly

– Single stepping, breakpointing, modifying variables
 Modify currently running program

– Recompile, relink, reload parts while program runs
 Advanced debugging features require an

integrated development environment

Chapter Four Modern Programming Languages, 2nd ed. 47

Debugging Information

 Where is it executing?
 What is the traceback of calls leading there?
 What are the values of variables?
 Source-level information from machine-level code

– Variables and functions by name
– Code locations by source position

 Connection between levels can be hard to
maintain, for example because of optimization

Chapter Four Modern Programming Languages, 2nd ed. 48

Outline

 The classical sequence
 Variations on the classical sequence
 Binding times
 Debuggers
 Runtime support

Chapter Four Modern Programming Languages, 2nd ed. 49

Runtime Support

 Additional code the linker includes even if the
program does not refer to it explicitly
– Startup processing: initializing the machine state
– Exception handling: reacting to exceptions
– Memory management: allocating memory, reusing it

when the program is finished with it
– Operating system interface: communicating between

running program and operating system for I/O, etc.
 An important hidden player in language systems

Chapter Four Modern Programming Languages, 2nd ed. 50

Conclusion

 Language systems implement languages
 Today: a quick introduction
 More implementation issues later,

especially:
– Chapter 12: memory locations for variables
– Chapter 14: memory management
– Chapter 18: parameters
– Chapter 21: cost models

Chapter Four Modern Programming Languages, 2nd ed. 51

	Language Systems
	Outline
	The Classical Sequence
	Creating
	Compiling
	Slide Number 6
	Assembling
	Slide Number 8
	Linking
	Slide Number 10
	Loading
	A Word About Memory
	Slide Number 13
	Running
	The Classical Sequence
	About Optimization
	Example
	Example
	Other Optimizations
	Outline
	Variation: Hiding The Steps
	Compiling to Object Code
	Variation: Integrated Development Environments
	Variation: Interpreters
	Virtual Machines
	Why Virtual Machines
	The Java Virtual Machine
	Intermediate Language Spectrum
	Delayed Linking
	Delayed Linking: Windows
	Delayed Linking: Unix
	Delayed Linking: Java
	Delayed Linking Advantages
	Profiling
	Dynamic Compilation
	Outline
	Binding
	Binding Times
	Language Definition Time
	Language Implementation Time
	Compile Time
	Link Time
	Load Time
	Run Time
	Late Binding, Early Binding
	Outline
	Debugging Features
	Debugging Information
	Outline
	Runtime Support
	Conclusion

