
The History Of
Programming Languages

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 1

 Prehistory of programming languages
– The story of the programmers of Babylon
– The story of Mohammed Al-Khorezmi
– The story of Augusta Ada, Countess of Lovelace

 Early programming languages
– The story of the Plankalkül
– The story of Fortran
– The story of Lisp
– The story of Algol
– The story of Smalltalk

 Our languages
– The story of Prolog
– The story of ML
– The story of Java

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 2

Babylon
 Cuneiform writing was used in the Babylon,

founded by Hammurabi around 1790 BC
 Many Babylonian clay tablets survive:

– poems and stories
– contracts and records
– astronomy
– math, base 60

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 3

A famous Babylonian math tablet
(Plimpton 322) involving Pythagorean
triples, a2+b2=c2 -- with a mistake!

Babylonian Numbers

 The two Babylonian digits for “1” and “10”,
written together, signify a number base 60

 The exponent is not given; the reader must
figure it out from the context

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 4

706010601 01 =×+×

6
110 16010601 =×+× −

ii 6010601 1 ×+× +

1,10 =

A Babylonian Program

 Written language to describe computational
procedures:

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 5

A cistern.
The length equals the height.
A certain volume of dirt has been excavated.
The cross-sectional area plus this volume comes to 1,10.
The length is 30. What is the width?
You should multiply the length, 30, by …

Translation by Donald Knuth

Programming Language
 No variables
 Instead, numbers serve as a running

example of the procedure being described
 “This is the procedure”
 Programming is among the earliest uses to

which written language was put

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 6

 Prehistory of programming languages
– The story of the programmers of Babylon
– The story of Mohammed Al-Khorezmi
– The story of Augusta Ada, Countess of Lovelace

 Early programming languages
– The story of the Plankalkül
– The story of Fortran
– The story of Lisp
– The story of Algol
– The story of Smalltalk

 Our languages
– The story of Prolog
– The story of ML
– The story of Java

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 7

Baghdad

 Near ancient Babylon
 Founded around 762
 A great center of scholarship, art and poetry
 780-850: Mohammed Al-Khorezmi, a court

mathematician, lived and wrote
 Two little books…

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 8

Algebra

 Kitâ al-jabr wa'l-muqabâla
 Translated into Latin, spread throughout

Europe
 Used as a mathematics text in Europe for

eight hundred years

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 9

Algorithms

 The original is lost
 Latin translation: Algorthmi de numero

Indorum
 Algorithms for computing with Hindu

numerals: base-10 positional system with 0
 A new technology (data structure and

algorithms)
 Strongly influenced medieval European

mathematics
Chapter Twenty-Four Modern Programming Languages, 2nd ed. 10

Other Early Written Algorithms

 Euclid, 300 BC: an algorithm for
computing the GCD of two numbers

 Alexander de Villa Dei, 1220 AD: Canto de
Algorismo, algorithms in Latin verse

 Not programming languages: natural
language (even poetry) plus mathematics

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 11

 Prehistory of programming languages
– The story of the programmers of Babylon
– The story of Mohammed Al-Khorezmi
– The story of Augusta Ada, Countess of Lovelace

 Early programming languages
– The story of the Plankalkül
– The story of Fortran
– The story of Lisp
– The story of Algol
– The story of Smalltalk

 Our languages
– The story of Prolog
– The story of ML
– The story of Java

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 12

Augusta Ada

 Daughter of George Gordon, Lord Byron
 Early 1800’s in England (as elsewhere)

women were generally denied education,
especially math and science

 Ada studied math with a private tutor (as an
antidote to feared Byronic tendencies)

 Married at 19 (Lady Lovelace), 3 children

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 13

Charles Babbage

 English mathematician
 Inventor of mechanical computers:

– Difference Engine, construction started but not
completed (until a 1991 reconstruction)

– Analytical Engine, never built

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 14

I wish to God these calculations had been executed by steam!

Charles Babbage, 1821

Analytical Engine

 Processing unit (the Mill)
 Memory (the Store)
 Programmable (punched cards)
 Iteration, conditional branching, pipelining,

many I/O devices

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 15

Sketch of the Analytical Engine

 A paper by Luigi Menabrea
 Published 1843
 Translated, with explanatory notes, by

A.A.L.
 Algorithms in a real programming

language: the machine language of punched
cards for the Analytical Engine

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 16

Not Just For Numbers

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 17

The bounds of arithmetic were however outstepped the
moment the idea of applying the cards had occurred; and
the Analytical Engine does not occupy common ground
with mere "calculating machines." … In enabling
mechanism to combine together general symbols in
successions of unlimited variety and extent, a uniting link
is established between the operations of matter and the
abstract mental processes of the most abstract branch of
mathematical science.

A.A.L.

 Prehistory of programming languages
– The story of the programmers of Babylon
– The story of Mohammed Al-Khorezmi
– The story of Augusta Ada, Countess of Lovelace

 Early programming languages
– The story of the Plankalkül
– The story of Fortran
– The story of Lisp
– The story of Algol
– The story of Smalltalk

 Our languages
– The story of Prolog
– The story of ML
– The story of Java

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 18

Konrad Zuse

 Built a mechanical computer in his parents’
living room in Berlin in 1936: the Z1

 Metal strips and pins—very different from
Babbage’s wheelwork

 Programmable using punched tapes
 Binary floating point numbers with an

explicit exponent

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 19

Early Development

 More computers:
– Z2 experimented with relays for the ALU
– Z3: all-relay technology (the first electronic

programmable digital computer)
– Z4: envisioned as a commercial system

 Most designs and prototypes destroyed in
the war

 1945: Zuse flees Berlin with wife and Z4

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 20

Plankalkül
 In 1945/46, Zuse completed the design of a

programming language: the Plankalkül
 Many advanced ideas:

– Assignment, expressions, subscripts
– Constructed types: from primitive (bit) other

types are constructed: integers, reals, arrays, etc.
– Conditional execution, loops, subroutines
– Assertions

 Many example programs: sorting, graphs,
numeric algorithms, syntax analysis, chess

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 21

The Notation
 Main line with three underneath:

– V: variable number
– K: subscript
– S: optional comment (showing types)

 V0[Z1]+=1 looks like:

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 22

V Z + 1 ⇒ V Z
V 0 1 0 1
K
S m×1·n 1·n 1·n m×1·n 1·n

Looks Influential…

 …but it was not: it was not published until
1972, and few people knew of it

 Never implemented: far beyond the state of
the art in hardware or software at the time

 Many of Zuse’s ideas were reinvented by
others

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 23

 Prehistory of programming languages
– The story of the programmers of Babylon
– The story of Mohammed Al-Khorezmi
– The story of Augusta Ada, Countess of Lovelace

 Early programming languages
– The story of the Plankalkül
– The story of Fortran
– The story of Lisp
– The story of Algol
– The story of Smalltalk

 Our languages
– The story of Prolog
– The story of ML
– The story of Java

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 24

The Labor Of Programming

 Programming has always been hard
 In the early days of large-scale digital

computers, it was labor-intensive
 Hard to appreciate now, how much tedious

work was involved then

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 25

The Good Old Days

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 26

In the early years of programming languages, the most
frequent phrase we heard was that the only way to program a
computer was in octal. Of course a few years later a few
people admitted that maybe you could use assembly
language…. I have here a copy of the manual for Mark I. I
think most of you would be totally flabbergasted if you were
faced with programming a computer, using a Mark I manual.
All it gives you are the codes. From there on you're on your
own to write a program. We were not programmers in those
days. The word had not yet come over from England. We
were "coders."

Rear Admiral Dr. Grace Murray Hopper

Wish List

 Floating point: coders had to keep track of
the exponent manually (Babylonian style)

 Relative addressing: coders kept notebooks
of subroutines, but the codes had to be
adjusted by hand for the absolute addresses

 Array subscripting help
 Something easier to remember than octal

opcodes

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 27

Early Aids
 Assemblers
 Programming tools:

– Short Code, John Mauchly, 1949 (interpreted)
– A-0, A-1, A-2, Grace Hopper, 1951-1953 (like

macro libraries)
– Speedcoding, John Backus, 1954 (interpreted)

 People began to see that saving programmer
time was important

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 28

Fortran

 The first popular high-level programming language
 A team led by John Backus at IBM
 "The IBM Mathematical FORmula TRANslating

System: FORTRAN", 1954:
– supposed to take six months -- took two years
– supposed to eliminate coding errors and debugging
– supposed to generate efficient code, comparable with hand-

written code -- very successful at this
– closely tied to the IBM 704 architecture

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 29

Separate Compilation
 First Fortran: no separate compilation
 Compiling “large” programs – a few

hundred lines – was impractical, since
compilation time approached 704 MTTF

 Fortran II added separate compilation
 Later Fortrans evolved with platform

independence: no more PAUSE statement!

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 30

I don’t know what the language of the year 2000 will
look like, but I know it will be called FORTRAN.

C.A.R. Hoare, 1982

Fortran’s Influence

 Many languages followed, but all designers
learned from Fortran

 Fortran team pioneered many techniques of
scanning, parsing, register allocation, code
generation, and optimization

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 31

John Backus
 Many contributions to programming

languages: Fortran, Algol 58 and 60, BNF,
FP (a purely functional language)

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 32

My point is this: while it was perhaps natural and inevitable that
languages like FORTRAN and its successors should have developed
out of the concept of the von Neumann computer as they did, the fact
that such languages have dominated our thinking for twenty years is
unfortunate. It is unfortunate because their long-standing familiarity
will make it hard for us to understand and adopt new programming
styles which one day will offer far greater intellectual and
computation power.

John Backus, 1978

 Prehistory of programming languages
– The story of the programmers of Babylon
– The story of Mohammed Al-Khorezmi
– The story of Augusta Ada, Countess of Lovelace

 Early programming languages
– The story of the Plankalkül
– The story of Fortran
– The story of Lisp
– The story of Algol
– The story of Smalltalk

 Our languages
– The story of Prolog
– The story of ML
– The story of Java

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 33

Lisp

 AI conference at Dartmouth, 1956: McCarthy,
Minsky, Newell, Simon

 Newell, Shaw and Simon demonstrate Logic
Theorist, a reasoning program written in IPL
(Information Processing Language)

 IPL had support for linked lists, and caught
McCarthy’s attention

 He wanted a language for AI projects, but not IPL:
too low-level and machine-specific

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 34

Early AI Language Efforts

 An IBM group (consulting McCarthy) developed
FLPL: Fortran List Processing Language

 McCarthy had a wish list, developed while writing
AI programs (chess and differential calculus)
– Conditional expressions
– Recursion
– Higher-order functions (like ML’s map)
– Garbage collection

 FLPL wasn’t the answer for McCarthy’s group at
MIT in 1958…

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 35

Lisp’s Unusual Syntax

 A Lisp program is a list representing an AST:
(+ a (* b c))

 The plan was to use some Fortran-like notation
 But McCarthy wrote a paper showing a simple

Lisp interpreter in Lisp: a function called eval
 To avoid syntax issues, he used the list-AST form,

both for eval’s input and for eval itself
 This eval, hand-translated into assembly

language, became the first implementation of Lisp

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 36

Lisp’s Unusual Syntax

 The group never gave up the idea of compiling
from some Fortran-like syntax

 But they never got around to it either
 In later years, people often tried to compile Lisp

from a Fortran- or Algol-like syntax
 None of them caught on
 There are advantages to having programs and data

use the same syntax, as we saw with Prolog

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 37

Lisp Evolution

 Quickly became, and remains, the most popular
language for AI applications

 Before 1980: many dialects in use:
– Each AI research group had its own dialect
– In the 1970’s, a number of Lisp machines were

developed, each with its own dialect
 Today: some standardization:

– Common Lisp: a large language and API
– Scheme: a smaller and simpler dialect

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 38

Lisp Influence

 The second-oldest general-purpose programming
language still in use

 Some ideas, like the conditional expression and
recursion, were adopted by Algol and later by
many other imperative languages

 The function-oriented approach influenced
modern functional languages like ML

 Garbage collection is increasingly common in
many different language families

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 39

 Prehistory of programming languages
– The story of the programmers of Babylon
– The story of Mohammed Al-Khorezmi
– The story of Augusta Ada, Countess of Lovelace

 Early programming languages
– The story of the Plankalkül
– The story of Fortran
– The story of Lisp
– The story of Algol
– The story of Smalltalk

 Our languages
– The story of Prolog
– The story of ML
– The story of Java

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 40

Algol
 In 1957, languages were proliferating

– In the US, computer manufacturers were developing
platform-specific languages like IBM’s Fortran

– In Europe, a number of languages had been designed by
different research groups: Plankalkül and others

 Algol was intended to stop this proliferation
– It would be the one universal, international, machine-

independent language for expressing scientific
algorithms

 In 1958, an international committee (!) was
formed to come up with the design

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 41

The Algols

 Eventually, three major designs: Algol 58,
Algol 60, and Algol 68

 Developed by increasingly large (!)
international committees

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 42

The Good News
 Virtually all languages after 1958 used ideas

pioneered by the Algol designs:
 Compound statements: begin statements end
 Free-format lexical structure
 BNF definition of syntax
 Local variables with block scope
 Static typing with explicit type declarations
 Nested if-then-else
 Call by value (and call by name)
 Recursive subroutines and conditional expressions (ex Lisp)
 Dynamic arrays
 First-class procedures
 User-defined operators

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 43

Issue: Phrase-Level Control

 Early languages used label-oriented control:

 Algol languages had good phrase-level control,
like the if and while we saw in Java, plus
switch, for, until, etc.

 A debate about the relative merits began to heat up
 Edsgar Dijkstra’s famous letter in 1968, “Go to

statement considered harmful,” proposed
eliminating label-oriented control completely

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 44

GO TO 27
IF (A-B) 5,6,7

Structured Programming

 Using phrase-level control instead of labels was
called structured programming

 There was a long debate: many programmers
found it difficult at first to do without labels

 Now, the revolution is over:
– Some languages (like Java) eliminated go to
– Others (like C++) still have it
– But programmers rarely use it, even when permitted

 The revolution was triggered (or at least fueled) by
the Algol designs

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 45

Issue: Orthogonality

 The Algol designs avoided special cases:
– Free-formal lexical structure
– No abritrary limits:

Any number of characters in a name
Any number of dimensions for an array

– And orthogonality: every meaningful
combination of primitive concepts is legal—no
special forbidden combinations to remember

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 46

Example

 Each combination not permitted is a special case
that must be remembered by the programmer

 By Algol 68, all combinations above are legal
 Just a sample of its orthogonality—few modern

languages take this principle as far as Algol

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 47

Integers Arrays Procedures

Passing as a parameter

Storing in a variable

Storing in an array

Returning from a procedure

The Bad News

 The Algol languages were not as widely used as
had been hoped
– Algol 58, extended to Jovial
– Algol 60 used for publication of algorithms, and

implemented and used fairly widely outside U.S.
 Some possible reasons:

– They neglected I/O
– They were considered complicated and difficult to learn
– They included a few mistakes, like by-name parameters
– They had no corporate sponsor (IBM chose to stick

with Fortran)

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 48

Before Smalltalk: Simula
 Kristen Nygaard and Ole-Johan Dahl, Norwegian

Computing Center, 1961
 Simula I: an special-purpose Algol extension for

programming simulations: airplanes at an airport,
customers at a bank, etc.

 Simula 67: a general-purpose language with
classes, objects, inheritance

 Co-routines rather than methods

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 49

Smalltalk

 Alan Kay, Xerox PARC, 1972
 Inspired by Simula, Sketchpad, Logo, cellular

biology, etc.
 Smalltalk is more object-oriented than most of its

more popular descendants
 Everything is an object: variables, constants,

activation records, classes, etc.
 All computation is performed by objects sending

and receiving messages: 1+2*3

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 50

A Design Philosophy

 Commit to a few simple ideas, then find the most
elegant language design from there:
– Lists, recursion, eval: Lisp
– Objects, message-passing: Smalltalk
– Resolution-based inference: Prolog

 Hallmarks:
– Initial implementation is easy
– Easy to modify the language
– Programming feels like custom language design

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 51

Smalltalk’s Influence

 The Simula languages and Smalltalk inspired a
generation of object-oriented languages

 Smalltalk still has a small but active user
community

 Most later OO languages concentrate more on
runtime efficiency:
– Most use static typing (Smalltalk uses dynamic)
– Most include non-object primitive types as well as

objects

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 52

 Prehistory of programming languages
– The story of the programmers of Babylon
– The story of Mohammed Al-Khorezmi
– The story of Augusta Ada, Countess of Lovelace

 Early programming languages
– The story of the Plankalkül
– The story of Fortran
– The story of Lisp
– The story of Algol
– The story of Smalltalk

 Our languages
– The story of Prolog
– The story of ML
– The story of Java

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 53

Prolog
 Alan Robinson, 1965: resolution-based theorem

proving
– Resolution is the basic Prolog step
– But Prolog did not follow easily or immediately

 Robert Kowalski, Edinburgh, 1971: an efficient
resolution-based technique, SL-resolution

 Alain Colmerauer and Philippe Roussel,
Marseilles, 1972: Prolog (programmation en
logique)
– For the automated deduction part of an AI project in

natural language understanding

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 54

Prolog Evolution
 1973 version:

– Eliminated special backtracking controls (introducing
the cut operation instead)

– Eliminated occurs-check
 David Warren, 1977: efficient compiled Prolog,

the Warren Abstract Machine
 (For many languages—Smalltalk, Prolog, ML—

techniques for efficient compilation were critical
contributions)

 ISO standards, 1995 and 2000

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 55

 Prehistory of programming languages
– The story of the programmers of Babylon
– The story of Mohammed Al-Khorezmi
– The story of Augusta Ada, Countess of Lovelace

 Early programming languages
– The story of the Plankalkül
– The story of Fortran
– The story of Lisp
– The story of Algol
– The story of Smalltalk

 Our languages
– The story of Prolog
– The story of ML
– The story of Java

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 56

ML

 Robin Milner, Edinburgh, 1974
 LCF: a tool for developing machine-assisted

construction of formal logical proofs
 ML was designed as the implementation language

for LCF
 Strong typing, parametric polymorphism, and type

inference were in the first designs
 Remained closely tied to LCF development for

several years

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 57

Issue: Formal Semantics

 The definition of Standard ML includes a
formal semantics (a natural semantics)

 This was part of the initial design, not (as is
more common) added after implementation

 Fits with the intended application: to trust
the proofs produced by LCF, you must trust
the language in which LCF is implemented

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 58

ML Evolution
 Luca Cardelli, 1980: efficient compiled ML
 1983: draft standard ML published
 Additions: pattern-matching, modules, named

records, exception handling, streams
 Dialects:

– Standard ML (SML), the one we used
– Lazy ML: ML with lazy evaluation strategy
– Caml: An ML dialect that diverged before the addition

of modules
– OCaml: Caml with object-oriented constructs
– F#: Commercial OCaml in Visual Studio 2010

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 59

 Prehistory of programming languages
– The story of the programmers of Babylon
– The story of Mohammed Al-Khorezmi
– The story of Augusta Ada, Countess of Lovelace

 Early programming languages
– The story of the Plankalkül
– The story of Fortran
– The story of Lisp
– The story of Algol
– The story of Smalltalk

 Our languages
– The story of Prolog
– The story of ML
– The story of Java

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 60

A Long Lineage

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 61

Algol 60

CPL

BCPL

B

“Basic CPL.” Vastly simplified. Typeless:
manipulates untyped machine words. Introduced the
C-family array idea: A[I], written in BCPL as
A!I, is the same as a reference to the word at
address A+I.
Martin Richards (a student of Strachey), 1967

An even larger language than Algol 60, adding
features for business data processing.
Christopher Strachey et. al., 1962-1966

An even simpler language, developed for systems
programming for the first Unix systems at Bell Labs.
Included compound assignments (a+=b), borrowed
from Algol 68.
Ken Thompson, 1969

A Long Lineage, Continued

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 62

B

C

C++

Java

Originally a C preprocessor adding object-oriented
features to C: “C with Classes”. Added dynamic
dispatch, overloaded operators and function names,
multiple inheritance, templates, exception handling.
Became and remains one of the most widely used
languages.
Bjarne Stroustrup, 1984

Extension of B (originally, “NB”) to take advantage
of more hardware (PDP-11). Type system, macro
preprocessor, I/O library, etc. Used to reimplement
the Unix kernel, and spread widely with Unix.
Dennis Ritchie et. al., 1971-1973

Java

 James Gosling, Sun Microsystems
 1991: Oak: a language for ubiquitous computers in

networked consumer technology
– Like C++, but smaller and simpler
– More secure and strongly typed
– More platform independent

 1995: renamed Java, retargeted for the Web
– Incorporated into web browsers
– Platform-independent active content for web pages

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 63

Nonlinear Lineage

 Not just a straight line from CPL
 Java also has:

– Garbage collection (ex Lisp)
– Concurrency (ex Mesa)
– Packages (ex Modula)

 But nothing new: it was intended to be a
production language, not a research
language

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 64

Conclusion: The Honor Roll
 Some programming language pioneers who have

won the Turing award:
 Alan Perlis, John McCarthy, Edsger Dijkstra, Donald Knuth,

Dana Scott, John Backus, Robert Floyd, Kenneth Iverson,
C.A.R. Hoare, Dennis Ritchie, Niklaus Wirth, John Cocke,
Robin Milner, Kristen Nygaard, Ole-Johan Dahl, Alan Kay,
Peter Naur, Frances Allen, and Barbara Liskov

 These very bright people had to work very hard on
things that now seem easy, such as:
– Local variables with block scope
– Using phrase-level control instead of go to

 Before becoming perfectly obvious to everyone,
these things were unknown and unguessed

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 65

Conclusion

 Is the evolution of programming languages nearly
done, or have we as far again to go?

 Maybe all the important discoveries have been
made, and language evolution will now slow and
converge

 Or maybe we will have the pleasure of seeing new
ideas, now unknown and unguessed, become
perfectly obvious to everyone

 Enjoy!

Chapter Twenty-Four Modern Programming Languages, 2nd ed. 66

	The History Of �Programming Languages
	Slide Number 2
	Babylon
	Babylonian Numbers
	A Babylonian Program
	Programming Language
	Slide Number 7
	Baghdad
	Algebra
	Algorithms
	Other Early Written Algorithms
	Slide Number 12
	Augusta Ada
	Charles Babbage
	Analytical Engine
	Sketch of the Analytical Engine
	Not Just For Numbers
	Slide Number 18
	Konrad Zuse
	Early Development
	Plankalkül
	The Notation
	Looks Influential…
	Slide Number 24
	The Labor Of Programming
	The Good Old Days
	Wish List
	Early Aids
	Fortran
	Separate Compilation
	Fortran’s Influence
	John Backus
	Slide Number 33
	Lisp
	Early AI Language Efforts
	Lisp’s Unusual Syntax
	Lisp’s Unusual Syntax
	Lisp Evolution
	Lisp Influence
	Slide Number 40
	Algol
	The Algols
	The Good News
	Issue: Phrase-Level Control
	Structured Programming
	Issue: Orthogonality
	Example
	The Bad News
	Before Smalltalk: Simula
	Smalltalk
	A Design Philosophy
	Smalltalk’s Influence
	Slide Number 53
	Prolog
	Prolog Evolution
	Slide Number 56
	ML
	Issue: Formal Semantics
	ML Evolution
	Slide Number 60
	A Long Lineage
	A Long Lineage, Continued
	Java
	Nonlinear Lineage
	Conclusion: The Honor Roll
	Conclusion

