
Programming Languages

Chapter One Modern Programming Languages, 2nd
ed. 1

Reasons for Studying Concepts of Programming Languages

Increased ability to express ideas
Improved background for choosing appropriate languages
Increased ability to learn new languages
Better understanding of significance of implementation
Better use of languages that are already known
Overall advancement of computing

Outline

 What makes programming languages an
interesting subject?
− The amazing variety
− The odd controversies
− The intriguing evolution
− The connection to programming practice
− The many other connections

Chapter One Modern Programming Languages, 2nd
ed. 3

The Amazing Variety

 There are very many, very different languages
 (A list that used to be posted occasionally on
comp.lang.misc had over 2300 published
languages in 1995)

 Often grouped into four families:
− Imperative
− Functional
− Logic
− Object-oriented

Chapter One Modern Programming Languages, 2nd
ed. 4

Programming Domains

 Scientific applications
 Large numbers of floating point computations; use of arrays
 Fortran

 Business applications
 Produce reports, use decimal numbers and characters
 COBOL

 Artificial intelligence
 Symbols rather than numbers manipulated; use of linked lists
 LISP

 Systems programming
 Need efficiency because of continuous use
 C

 Web Software
 Eclectic collection of languages: markup (e.g., HTML), scripting (e.g., PHP),

general-purpose (e.g., Java)

Imperative Languages
 Example: a factorial function in C

 Hallmarks of imperative languages:
− Assignment
− Iteration
− Order of execution is critical

Chapter One Modern Programming Languages, 2nd
ed. 6

int fact(int n) {
int sofar = 1;
while (n>0) sofar *= n--;
return sofar;

}

Functional Languages
 Example: a factorial function in ML

 Hallmarks of functional languages:
− Single-valued variables
− Heavy use of recursion

Chapter One Modern Programming Languages, 2nd
ed. 7

fun fact x =
if x <= 0 then 1 else x * fact(x-1);

Another Functional Language
 Example: a factorial function in Lisp

 Looks very different from ML
 But ML and Lisp are closely related

− Single-valued variables: no assignment
− Heavy use of recursion: no iteration

Chapter One Modern Programming Languages, 2nd
ed. 8

(defun fact (x)
(if (<= x 0) 1 (* x (fact (- x 1)))))

Logic Languages
 Example: a factorial function in Prolog

 Hallmark of logic languages
− Program expressed as rules in formal logic

Chapter One Modern Programming Languages, 2nd
ed. 9

fact(X,1) :-
X =:= 1.

fact(X,Fact) :-
X > 1,
NewX is X - 1,
fact(NewX,NF),
Fact is X * NF.

Object-Oriented Languages
 Example: a Java definition for a kind of

object that can store an integer and compute
its factorial

Chapter One Modern Programming Languages, 2nd
ed. 10

Chapter One Modern Programming Languages, 2nd
ed. 11

public class MyInt {
private int value;
public MyInt(int value) {
this.value = value;

}
public int getValue() {
return value;

}
public MyInt getFact() {
return new MyInt(fact(value));

}
private int fact(int n) {
int sofar = 1;
while (n > 1) sofar *= n--;
return sofar;

}
}

Object-Oriented Languages
 Hallmarks of object-oriented languages:

− Usually imperative, plus…
− Constructs to help programmers use

“objects”—little bundles of data that know how
to do things to themselves

Chapter One Modern Programming Languages, 2nd
ed. 12

Strengths and Weaknesses
 The different language groups show to

advantage on different kinds of problems
 Decide for yourself at the end of the

semester, after experimenting with them
 For now, one comment: don’t jump to

conclusions based on factorial!
− Functional languages do well on such functions
− Imperative languages, a bit less well
− Logic languages, considerably less well
− Object-oriented languages need larger examples

Chapter One Modern Programming Languages, 2nd
ed. 13

Language Evaluation Criteria

Readability: the ease with which programs can be read and
understood
Writability: the ease with which a language can be used to
create programs
Reliability: conformance to specifications (i.e., performs to its
specifications)
Cost: the ultimate total cost

Evaluation Criteria: Readability

• Overall simplicity
» A manageable set of features and constructs
» Minimal feature multiplicity
» Minimal operator overloading

• Orthogonality
» A relatively small set of primitive constructs can be combined in a

relatively small number of ways
» Every possible combination is legal

• Data types
» Adequate predefined data types

• Syntax considerations
» Identifier forms: flexible composition
» Special words and methods of forming compound statements
» Form and meaning: self-descriptive constructs, meaningful keywords

Evaluation Criteria: Writability

 Simplicity and orthogonality
 Few constructs, a small number of primitives, a small set of rules for combining

them

 Support for abstraction
 The ability to define and use complex structures or operations in ways that

allow details to be ignored

 Expressivity
 A set of relatively convenient ways of specifying operations
 Strength and number of operators and predefined functions

Evaluation Criteria: Reliability

 Type checking
 Testing for type errors

 Exception handling
 Intercept run-time errors and take corrective measures

 Aliasing
 Presence of two or more distinct referencing methods for the same memory

location

 Readability and writability
 A language that does not support “natural” ways of expressing an algorithm will

require the use of “unnatural” approaches, and hence reduced reliability

Evaluation Criteria: Cost

 Training programmers to use the language
 Writing programs (closeness to particular applications)
 Compiling programs
 Executing programs
 Language implementation system: availability of free

compilers
 Reliability: poor reliability leads to high costs
 Maintaining programs

Evaluation Criteria: Others

 Portability
 The ease with which programs can be moved from one

implementation to another
 Generality
 The applicability to a wide range of applications

 Well-definedness
 The completeness and precision of the language’s official

definition

About Those Families

 There are many other language family terms
(not exhaustive and sometimes overlapping)
− Applicative, concurrent, constraint, declarative,

definitional, procedural, scripting, single-
assignment, …

 Some multi-paradigm languages straddle
families: JavaScript, OCaml, Python, Ruby

 Others are so unique that assigning them to
a family is pointless

Chapter One Modern Programming Languages, 2nd
ed. 20

Example: Forth Factorial

 A stack-oriented language
 Postscript is similar
 Could be called imperative, but has little in

common with most imperative languages

Chapter One Modern Programming Languages, 2nd
ed. 21

: FACTORIAL
1 SWAP BEGIN ?DUP WHILE TUCK * SWAP 1- REPEAT ;

Example: APL Factorial

 An APL expression that computes X’s factorial
 Expands X it into a vector of the integers 1..X,

then multiplies them all together
 (You would not really do it that way in APL, since

there is a predefined factorial operator: !X)
 Could be called functional, but has little in

common with most functional languages

Chapter One Modern Programming Languages, 2nd
ed. 22

× / ι X

Outline

 What makes programming languages an
interesting subject?
− The amazing variety
− The odd controversies
− The intriguing evolution
− The connection to programming practice
− The many other connections

Chapter One Modern Programming Languages, 2nd
ed. 23

The Odd Controversies

 Programming languages are the subject of
many heated debates:
− Partisan arguments
− Language standards
− Fundamental definitions

Chapter One Modern Programming Languages, 2nd
ed. 24

Language Partisans

 There is a lot of argument about the relative
merits of different languages

 Every language has partisans, who praise it
in extreme terms and defend it against all
detractors

Chapter One Modern Programming Languages, 2nd
ed. 25

Language Standards

 The documents that define language
standards are often drafted by international
committees

 Can be a slow, complicated and rancorous
process

 Fortran 82 8X 88 90 standard released in
1991

Chapter One Modern Programming Languages, 2nd
ed. 26

Basic Definitions

 Some terms refer to fuzzy concepts: all those
language family names, for example

 No problem; just remember they are fuzzy
− Bad: Is X really an object-oriented language?
− Good: What aspects of X support an object-oriented

style of programming?
 Some crisp concepts have conflicting terminology:

one person’s argument is another person’s actual
parameter

Chapter One Modern Programming Languages, 2nd
ed. 27

Outline

 What makes programming languages an
interesting subject?
− The amazing variety
− The odd controversies
− The intriguing evolution
− The connection to programming practice
− The many other connections

Chapter One Modern Programming Languages, 2nd
ed. 28

The Intriguing Evolution

 Programming languages are evolving
rapidly
− New languages are being invented
− Old ones are developing new dialects

Chapter One Modern Programming Languages, 2nd
ed. 29

New Languages

 A clean slate: no need to maintain
compatibility with an existing body of code

 But never entirely new any more: always
using ideas from earlier designs

 Some become widely used, others do not
 Whether widely used or not, they can serve

as a source of ideas for the next generation

Chapter One Modern Programming Languages, 2nd
ed. 30

Widely Used: Java

 Quick rise to popularity since 1995 release
 Java uses many ideas from C++, plus some

from Mesa, Modula, and other languages
 C++ uses most of C and extends it with

ideas from Simula 67, Ada, Clu, ML and
Algol 68

 C was derived from B, which was derived
from BCPL, which was derived from CPL,
which was derived from Algol 60

Chapter One Modern Programming Languages, 2nd
ed. 31

Not Widely Used: Algol

 One of the earliest languages: Algol 58,
Algol 60, Algol 68

 Never widely used
 Introduced many ideas that were used in

later languages, including
− Block structure and scope
− Recursive functions
− Parameter passing by value

Chapter One Modern Programming Languages, 2nd
ed. 32

Dialects

 Experience with languages reveals their
design weaknesses and leads to new dialects

 New ideas pass into new dialects of old
languages

Chapter One Modern Programming Languages, 2nd
ed. 33

Some Dialects Of Fortran

 Original Fortran, IBM
 Major standards:

− Fortran II
− Fortran III
− Fortran IV
− Fortran 66
− Fortran 77
− Fortran 90
− Fortran 95
− Fortran 2003
− Fortran 2008?

Chapter One Modern Programming Languages, 2nd
ed. 34

 Deviations in each
implementation

 Parallel processing
− HPF
− Fortran M
− Vienna Fortran

 And many more…

Outline

 What makes programming languages an
interesting subject?
− The amazing variety
− The odd controversies
− The intriguing evolution
− The connection to programming practice
− The many other connections

Chapter One Modern Programming Languages, 2nd
ed. 35

The Connection To Programming
Practice
 Languages influence programming practice

− A language favors a particular programming
style—a particular approach to algorithmic
problem-solving

 Programming experience influences
language design

Chapter One Modern Programming Languages, 2nd
ed. 36

Language Influences
Programming Practice
 Languages often strongly favor a particular

style of programming
− Object-oriented languages: a style making

heavy use of objects
− Functional languages: a style using many small

side-effect-free functions
− Logic languages: a style using searches in a

logically-defined problem space

Chapter One Modern Programming Languages, 2nd
ed. 37

Fighting the Language

 Languages favor a particular style, but do
not force the programmer to follow it

 It is always possible to write in a style not
favored by the language

 It is not usually a good idea…

Chapter One Modern Programming Languages, 2nd
ed. 38

Imperative ML

Chapter One Modern Programming Languages, 2nd
ed. 39

fun fact n =
let

val i = ref 1;
val xn = ref n

in
while !xn>1 do (
i := !i * !xn;
xn := !xn - 1

);
!i

end;

ML makes it hard to use assignment and side-effects. But
it is still possible:

Non-object-oriented Java

Chapter One Modern Programming Languages, 2nd
ed. 40

Java, more than C++, tries to encourage you to adopt an
object-oriented mode. But you can still put your whole
program into static methods of a single class:

class Fubar {
public static void main (String[] args) {

// whole program here!
}

}

Functional Pascal

Chapter One Modern Programming Languages, 2nd
ed. 41

function ForLoop(Low, High: Integer): Boolean;
begin
if Low <= High then
begin
{for-loop body here}
ForLoop := ForLoop(Low+1, High)

end
else
ForLoop := True

end;

Any imperative language that supports recursion can be used
as a functional language:

Programming Experience
Influences Language Design
 Corrections to design problems make future

dialects, as already noted
 Programming styles can emerge before

there is a language that supports them
− Programming with objects predates object-

oriented languages
− Automated theorem proving predates logic

languages

Chapter One Modern Programming Languages, 2nd
ed. 42

Outline

 What makes programming languages an
interesting subject?
− The amazing variety
− The odd controversies
− The intriguing evolution
− The connection to programming practice
− The many other connections

Chapter One Modern Programming Languages, 2nd
ed. 43

Other Connections:
Computer Architecture
 Language evolution drives and is driven by

hardware evolution:
− Call-stack support – languages with recursion
− Parallel architectures – parallel languages
− Internet – Java

Chapter One Modern Programming Languages, 2nd
ed. 44

Other Connections:
Theory of Formal Languages
 Theory of formal languages is a core mathematical

area of computer science
− Regular grammars, finite-state automata – lexical

structure of programming languages, scanner in a
compiler

− Context-free grammars, pushdown automata – phrase-
level structure of programming languages, parser in a
compiler

− Turing machines – Turing-equivalence of programming
languages

Chapter One Modern Programming Languages, 2nd
ed. 45

Turing Equivalence
 Languages have different strengths, but

fundamentally they all have the same power
− {problems solvable in Java}

= {problems solvable in Fortran}
= …

 And all have the same power as various
mathematical models of computation
− = {problems solvable by Turing machine}

= {problems solvable by lambda calculus}
= …

 Church-Turing thesis: this is what “computability”
means

Chapter One Modern Programming Languages, 2nd
ed. 46

Conclusion

 Why programming languages are worth studying
(and this course worth taking):
− The amazing variety
− The odd controversies
− The intriguing evolution
− The connection to programming practice
− The many other connections

 Plus…there is the fun of learning three new
languages!

Chapter One Modern Programming Languages, 2nd
ed. 47

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47

