
Regular Expressions



What are Regular Expressions?



What are Regular Expressions?

I Method of Pattern Matching and search within strings
I Method of describing a type of language known as a Regular

Lanages (from Formal Language Theory)



Chomsky Hierarchy

So Far in this class we have talked about several language types,
which can be expressed by:

I BNF Grammars
I Regular Expressions



Chomsky Hierarchy

These are part of the Chomsky hierarchy which composes languages
depending on the restrictions imposed on the types of languages:

I Type 0: Recursively Enumerable languages -> Describable by a
Turing Machine

I Type 1: Context Sensitive language -> Describable by a
Linear-Bounded Non-deterministic Turing Machine

I Type 2: Context-free language -> Describable by a
Non-deterministic Pushdown Automaton -> Programming
Languages -> BNF Grammars

I Type 3: Regular language -> Describable by a finite-state
automaton -> Regular Expressions



Chomsky Hierarchy

Figure 1: image



Regular Expressions

Returning to Regular Expressions, they describe a language but are
typically used to identify strings of that language within the context
of other strings.

That is they are used to strings matching a given pattern.



Regular Expression Character Classes

We can define a class which matches a given set of characters by
placing the characters of concern in square brackets:

I [A-Z] The class matching A,B,. . . ,Y,Z
I [a-zA-Z] The class matching a,. . . ,z and A,. . . ,Z
I [.?!] The class matching ‘.’ ? and !

Some classes are so common that they are predefined



Predefined classes

Symbol Description

\w Matches word characters
\W Matches non-word characters
\s Matches whitespace, [\t\n\r\f]
\S Matches non-whitespace
\d Matches digits [0-9]
\D Matches non-digits



Other characters and Repetition

I any character by itself e matches that character. The character
. matches any character.

I To match a character, class, or group repeatedly you can use
the following:

I re* – The star matches zero or more times
I re+ – The plus matches one or more times
I re? – The ? matches zero or one time
I re{n} – matches exactly n number of occurrences
I re{n,} – matches n or more occurrences
I re{n,m} – matches at least n and at most m occurrences
I a | b – matches a or b
I Greedy vs. Non-greedy
I /<.*>/ - matches <ruby>perl>
I /<.*?>/ - matches <ruby> in <ruby>perl>



Boundaries

We can also control matching with boundaries

I ˆ - matches the beginning of a line
I $ - matches the end of a line
I \A - matches beginning of a string
I \Z - matches end of a string
I \b - matches word boundaries when outside brackets, and

backspace when inside brackets
I \B - matches non word boundaries
I \1 ... \9 - matches nth grouped subexpression

Expressions can be grouped into sets of sub-expressions with by
placing sections in parentheses



Lets see some examples


	Regular Expressions
	Lets see some examples

